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ABSTRACT

The oceanic cycles of thorium-230 and protactinium-231 are affected by a number of processes, such as

removal by adsorption to settling particles and transport by ocean currents. Measurements obtained as part

of GEOTRACES and earlier programs have shown that, in the North Atlantic, the activities of dissolved

230Th (230Thd) and 231Pa (231Pad) at abyssal depths are lower near the western margin than in the basin

interior. At least two factors could explain the lower 230Thd and 231Pad near the margin: (i) intensified

scavenging in benthic nepheloid layers (BNLs) extending a thousand meters or more above the seafloor; and

(ii) ventilation by relatively 230Thd- and 231Pad-poor waters emanating from the Deep Western Boundary

Current (DWBC).

Here a regional ocean circulation model with ‘eddy-permitting’ resolution (1/4◦) that incorporates 230Th

and 231Pa is used in an effort to reproduce the observed distributions of 230Th and 231Pa in the western North

Atlantic. In this model, 230Th and 231Pa removal from solution is governed by a prescribed distribution of

particulate matter that is derived from a recent synthesis of nephelometer and transmissometer data. The

model simulates a meandering Gulf Stream and a DWBC along the continental slope and rise, although

noticeable differences with physical observations also exist. A model solution is found that explains most

of the variance of 230Thd measurements (85%) and 231Pad measurements (81%) from (pre-)GEOTRACES

cruises. On the other hand, measurements of particulate 230Th (230Thp) and 231Pa (231Pap) are more

difficult to reproduce, with the same solution accounting for only 49% (11%) of the 230Thp (231Pap) variance.

Sensitivity experiments suggest that the low 230Thd and 231Pad activities observed near the western margin

are due to enhanced removal rates of both nuclides in BNLs rather than to deep water ventilation from

the western boundary. The radionuclide activities present in the DWBC at its inflow location are also

found to strongly influence the basin-scale distributions of 230Th and 231Pa. Overall, our study points to

BNLs as important sites of 230Th and 231Pa scavenging in the ocean and illustrates the difficulty to explain

simultaneously radionuclide measurements in dissolved and particulate forms in the studied area.

Keywords: 230Th, 231Pa, regional ocean circulation model, Deep Western Boundary Current, reversible

exchange, particle concentration effect, nepheloid layer
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1. Introduction

Thorium-230 (half-life of 75.6 kyr; Cheng et al. (2013)) and protactinium-231 (32.8 kyr; Robert et al.

(1969)) are two naturally-occurring radioisotopes that are produced from the radioactive decay of uranium-

234 and uranium-235, respectively. Uranium isotopes display quasi-conservative behaviour in seawater and

concentrations proportional to salinity (e.g., Owens et al. (2011)), so that the production rates of 230Th

and 231Pa are expected to be approximately uniform in the world’s oceans. Both 230Th and 231Pa are

thought to be removed from the water column through a reversible exchange (adsorption and desorption)

with settling particles (Nozaki et al. 1981; Bacon and Anderson 1982), a process often referred to as ‘particle

scavenging’. A convenient measure of the intensity of particle scavenging is provided by the distribution

coefficient, KD = Ap/(AdP ), where Ad (Ap) is the activity (in units of dpm) of the radionuclide in the

dissolved (particulate) phase per kg of seawater and P is the bulk particle concentration in units of grams

of particles per gram of seawater. In the open ocean, K 230
D for Th is typically of the order of 107 g g−1,

indicating a strong tendency for Th to adsorb onto marine particles, whereas KD for 231Pa is generally lower

by one order of magnitude (Moran et al. 2002; Hayes et al. 2015a). As a result of their different sensitivities

to particle scavenging, Th and Pa represent two model types for the fate of trace metals, Th being removed

from the open ocean primarily by settling particles and Pa largely by lateral transport to other environments

(Anderson et al. 1983b,a; Henderson and Anderson 2003).

The distributions of 230Th and 231Pa in the North Atlantic have been documented in a number of studies.

Early work showed that the activities of dissolved 230Th (230Thd) or dissolved 231Pa (231Pad) from distant

locations exhibit a similar increase with depth in the upper ∼ 1000 m of the water column but present

large horizontal variations in the abyssal region below (for syntheses see Marchal et al. (2007); Luo et al.

(2010)). More recently, the distributions of 230Th and 231Pa in both dissolved and particulate forms have

been determined with unprecedented horizontal and vertical resolutions along the U.S. GEOTRACES North

Atlantic section GA03 (Hayes et al. 2015a). Consistent with pre-GEOTRACES data, 230Thd or 231Pad from

distant locations showed a similar increase with depth in the upper 1000 m but large lateral variations at

greater depths. Below about 1000 m, stations west of Bermuda displayed lower 230Thd and 231Pad than

stations east of Bermuda (Fig. 1).
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Fig. 1. Vertical profiles of dissolved 230Th and 231Pa activities in the North Atlantic. Data from stations

west (east) of Bermuda are shown with black (blue) circles and data from station GT11-16, near the TAG

hydrothermal vent, are shown with red circles. The horizontal bars show the measurement uncertainties

(see Table 1 for data sources).

At stations west of Bermuda, 230Thd and 231Pad increased with depth down to about 2000–4000 m but

decreased with depth below. Whereas the activity increase with depth observed in the upper part of the

water column is consistent with a reversible exchange of Th and Pa with settling particles (Bacon and

Anderson 1982), the reversal in the vertical activity gradient at mid-depth and the large horizontal activity

gradients in the deeper part await further investigation.
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At least three factors could explain the departures of 230Thd and 231Pad measurements from the profiles

expected from reversible exchange: (i) spatial variations in particle scavenging due to variations in bulk

particle concentration, (ii) spatial variations in particle scavenging due to variations in particle composition,

and (iii) the ventilation of deep layers by components of the North Atlantic Deep Water (NADW). Each of

these factors is introduced in turn below.

Particle scavenging in oceanic waters appears to vary with bulk particle concentration (P ). Two observed

characteristics of metal sorption in natural waters are in apparent contradiction with physico-chemical ad-

sorption theory: (i) the time scales of sorption reactions are long, reaching days to weeks and more, and

(ii) KD is negatively correlated with particle concentration – the so-called particle concentration effect (e.g.,

Honeyman and Santschi (1989)). Colloids have for a long time been invoked to explain the slow Th sorption

kinetics (e.g., Tsunogai and Minagawa (1978)). In the model developed by these authors, dissolved Th

species rapidly and irreversibly adsorb onto colloidal particles, which then reversibly aggregate with larger

filterable particles. Santschi et al. (1986) proposed that if the sorption of a metal ion has particle aggregation

as a rate-limiting step, then the rate of sorption should vary with particle number or particle concentration.

In the Brownian-pumping model, both characteristics (i-ii) result from the same underlying processes: the

rapid formation of metal-colloid surface site complexes (adsorption) and the slow coagulation of colloids with

filterable particles (Honeyman and Santschi 1989). More generally, the negative correlation between KD and

P could arise from at least two factors: (i) higher concentrations of Th-binding colloids, small enough to

pass through typical filters, may keep apparent Th concentrations high in the ‘dissolved’ phase, and (ii) the

surface area per mass of particles may decrease at greater particle mass, which would reduce the number of

available binding sites (Henderson et al. 1999; Pavia et al. 2018). Owing to their high specific surface area

and complexation capacity, colloidal particles may be of great importance in the cycling of particle-reactive

elements (e.g., Guo et al. (1997)), and laboratory studies suggested that they could significantly influence

Th scavenging in oceanic waters (e.g., Guo et al. (1997); Quigley et al. (2001, 2002)).

The 230Th, 231Pa, and particle data collected along GA03 indicated that particle concentration influences

solid-solution partitioning and sorption rates in North Atlantic waters (Hayes et al. 2015b; Lerner et al. 2017).

Hayes et al. (2015b) found that KD for 230Th and 231Pa generally decreased with particle concentration along

GA03. Lerner et al. (2017) derived estimates of the apparent first-order rate constant for Th adsorption onto

particles (k1) from an inversion of size-fractionated 228,230,234Th and particle data gathered at eleven stations

east of Bermuda. They found that k1 generally decreases with depth, with the time scale 1/k1 averaging

1.0 yr in the upper 1000 m and (1.4 – 1.5) yr below. A positive relationship between k1 and P was found,

consistent with the notion that k1 increases with the number of surface sites available for adsorption (e.g.,

Honeyman et al. (1988)). In contrast to the influence of colloids as envisioned by the Brownian pumping
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hypothesis, Lerner et al. (2017) provided evidence that the particle concentration effect may arise from the

joint effect of P on the rate constants for Th attachment to, and detachment from, particles.

Particle scavenging could be intensified at abyssal depths in the western North Atlantic due to the

presence of benthic nepheloid layers (BNLs) (Fig. 2). Vertical traces from nephelometers have long revealed

that BNLs are common near the western margin in depths greater than 3000 m where a clear water minimum

is typically found; in contrast to the western basins, the eastern basins generally show low turbidity (Eittreim

et al. 1969, 1976; Biscaye and Eittreim 1977). A recent synthesis of light scattering and attenuation data

illustrated that the particle load in excess of the concentration at the clear water minimum decreases eastward

in the western North Atlantic by up to one order of magnitude (Gardner et al. 2017). In line with this result,

particulate matter concentrations estimated from size-fractionated particle composition data featured intense

BNLs along GA03 in the western North American margin with P > 1000 mg m−3, two to three orders of

magnitude higher than in surrounding waters (Lam et al. 2015). These observations suggest that intensified

scavenging due to high particle concentrations could contribute to the relatively low 230Thd and 231Pad in

the deep waters west of Bermuda.
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Fig. 2. Regionally averaged vertical profile of particulate matter (PM) concentration in the western North

Atlantic. Each circle is an average based on (i) optical measurements converted empirically to PM

concentration and (ii) a linear interpolation at the same vertical levels of the concentration estimates

obtained from optical profiles at different stations. The horizontal bars show the standard errors of the

averages (data compilation from Gardner et al. (2017)).

Particle scavenging in the ocean seems to vary also with the chemical composition of particles (e.g.,

Anderson et al. (1983a); Chase et al. (2002); Geibert and Usbeck (2004); Scholten et al. (2005); Roberts

et al. (2009); Chuang et al. (2013); Lin et al. (2014)). A number of studies provided evidence for a role

of particle composition on the sorption of 230Th and 231Pa in North Atlantic waters. Roy-Barman et al.

(2005) reported that 230Th of particles collected by sediment traps deployed in the eastern North Atlantic

is positively correlated with Mn, Ba, and lithogenic fractions and does not covary with CaCO3 or biogenic

silica (bSi). Radioisotope and particle data from section GA03 provided further insight into the effects

of particle type on Th and Pa scavenging in the North Atlantic (Hayes et al. 2015b; Lerner et al. 2018).
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Hayes et al. (2015b) inferred enhanced scavenging by authigenic Fe and Mn (hydr)oxides in the form of

hydrothermal particles emanating from the Middle Atlantic Ridge (MAR) and particles resuspended from

reducing environments near the seabed off the West African coast. Biogenic silica was not found to be a

significant scavenging phase for Th and Pa, presumably because of its low abundance and small variance

at the sampled stations. Lerner et al. (2018) examined the dependence of their k1 estimates (below about

100 m) on particle composition (particulate organic C, CaCO3, bSi, lithogenic material, and Fe and Mn

(hydr)oxides) at stations east of Bermuda. Particle composition was found to explain a larger fraction

of k1 variance for stations within the Mauritanian upwelling region (‘eastern stations’) than for stations

west of that region (‘western stations’). The k1 variance explained by particle composition was mainly due

to biogenic particles at the ‘eastern stations’ and to Mn oxides at the ‘western stations’. Interestingly, the

proportions of k1 variance explained by particle composition and particle concentration were not significantly

different (Lerner et al. 2018).

In addition to variations in particle scavenging intensity, ventilation of the deep basins by components

of NADW has been postulated to impact the distributions of 230Thd and 231Pad in the North Atlantic

(e.g., Moran et al. (1997); Vogler et al. (1998); Moran et al. (2002)). The Deep Western Boundary Current

(DWBC) in the western North Atlantic transports cold waters from the northern North Atlantic toward the

equatorial region (e.g., Schmitz and McCartney (1993)) and appears to act as a major conduit from which

deep layers in the North Atlantic are ventilated. The dynamical processes responsible for the ventilation of

deep basins from the western boundary are varied and complex, involving, e.g., recirculation gyres (e.g., Hogg

et al. (1986); Pickart and Hogg (1989)), mesoscale eddies (e.g., Pickart et al. (1997)), offshore entrainment in

the region where the DWBC and the Gulf Stream cross over (e.g., Bower and Hunt (2000a,b)), deep cyclones

accompanying meander troughs in the Gulf Stream path (e.g., Andres et al. (2016)), and stirring between

the boundary and the interior (e.g., Le Bras et al. (2017, 2018)).

Tracer measurements have shed considerable light on deep ventilation in the North Atlantic. Tritium

and excess helium-3 data indicated that the deep water in the subpolar gyre is ventilated by NADW on

time scales of about 10–15 yr (Doney and Jenkins 1994). Chlorofluorocarbon (CFC) data showed that deep

layers in the North Atlantic are renewed on decadal time scales by Labrador Sea Water (LSW) and Denmark

Strait Overflow Water (DSOW) originating from the western boundary (e.g., Rhein et al. (2015)). From

multiple tracer data collected along GA03, Holzer et al. (2018) estimated that abyssal waters have a mean

age ranging from 200 to 400 yr and are younger in the western basins. Overflow waters last ventilated in

the Arctic Ocean and in the Norwegian and Greenland Seas would contribute about 40% of waters present

in the western basins where ∼60% of these overflow waters are younger than 160 yr (Holzer et al. 2018).

Early measurements of 230Thd in the Labrador Sea and the Denmark Strait presented relatively small
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values compared to those observed at more southern locations in the Atlantic Ocean (Moran et al. 1995,

1997, 2002), suggesting that ventilation by LSW and DSOW would tend to decrease 230Thd in the deep

North Atlantic. Similarly, recent measurements obtained on filtered seawater collected in the Labrador Sea,

Irminger Sea, Iceland Basin, and West European Basin along GEOTRACES section GA01 (Deng et al.

2018) showed 230Thd and 231Pad activities that are lower than those measured further south in the Atlantic

Ocean. The low 230Th 231
d and Pad near the bottom in the Labrador Sea and Irminger Sea appeared to be

related to the presence of young (e.g., CFC-rich) waters, whilst enhanced scavenging of both nuclides near

the seafloor would also occur in overflow waters (Deng et al. 2018).

In summary, at least two processes could contribute to the relatively low 230Thd and 231Pad observed at

abyssal depths in the western North Atlantic: (i) intensified particle scavenging in thick or rapidly cycling

BNLs and (ii) ventilation by 230Thd- and 231Pad-poor components of NADW from the western boundary. In

this paper, we apply a regional ocean circulation model in order to study the effects of these two processes on

the distributions of both radionuclides. The model is configured to represent the western North Atlantic with

‘eddy-permitting’ (1/4◦) resolution and includes a description of 230Th and 231Pa cycling. In this description,

the rates of 230Th and 231Pa removal from solution are determined by a prescribed distribution of particulate

matter concentration based on a recent compilation of nephelometer and transmissometer data. Results from

the circulation-scavenging model are then compared to (i) physical oceanographic observations provided from

satellite altimetry and repeat sections between the New England continental shelf and Bermuda; and (ii)

radionuclide measurements obtained from (pre-)GEOTRACES cruises. Finally, numerical experiments are

performed with the model in order to evaluate the sensitivity of the simulated distributions of 230Th and

231Pa in both dissolved and particulate forms to (i) the intensity of particle scavenging, (ii) the strength of

the DWBC, and (iii) the radionuclide activities that are present in the DWBC.

Thorium-230 and protactinium-231 have been incorporated in ocean models in previous studies. Both

tracers have been included in three-dimensional (3D) models of global ocean circulation (Henderson et al.

1999; Siddall et al. 2005; Dutay et al. 2009; Rempfer et al. 2017; Gu and Liu 2017; van Hulten et al. 2018),

in a zonally-averaged circulation model (Marchal et al. 2000), in a 2D (latitude-depth) box model (Luo et al.

2010), and in 3D regional inverse models (Marchal et al. 2007; Burke et al. 2011). Most of these studies were

aimed at testing paleoceanographic applications of 230Th and 231Pa, more specifically the use of sediment

230Th activity data to correct accumulation rates for the effects of sediment redistribution (Bacon 1984) and

the use of the 231Pa/230Th ratio from Atlantic sediments as a paleocirculation indicator (Yu et al. 1996).

The present work complements these earlier studies by isolating the relative influences of particle scavenging

and ocean circulation on radionuclide distributions in the western North Atlantic using a model with higher

horizontal resolution and a treatment of sorption kinetics that relates specific rates of adsorption to a particle
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concentration field derived from optical data. On the other hand, our model does not account for fluxes

of radionuclides from the seafloor such as due to sediment resuspension (e.g., Rutgers van der Loeff and

Boudreau (1997)). Emphasis is placed on understanding water column measurements, although our results

may also have implications for the interpretation of sediment records of 230Th and 231Pa.

The remainder of this paper is organized as follows. In section 2, the physical, radionuclide, and optical

data sets used in this study are briefly described. Nephelometer and transmissometer data are converted

into estimates of particulate matter (PM) concentration using published calibrations, and an estimate of the

3D distribution of PM concentration in the study area is derived. The ocean model is presented in section 3.

The physical and geochemical components of the model are detailed, together with the conditions imposed

at the surface and at the open boundaries of the regional domain. In section 4, a particular model solution

is presented that shows relatively good agreement with physical oceanographic and radionuclide data. The

influences of particle scavenging intensity and of DWBC properties (strength and radionuclide contents) are

then illustrated in section 5 through a number of sensitivity experiments. Our results are discussed in section

6, with emphasis on the role of BNLs in particle scavenging. A summary and perspectives follow in section

7.

2. Data

a. Physical Data

This study relies on a number of physical datasets. Bathymetric data used to establish the model

bottom topography are obtained from ETOPO2 version 2 (ETOPO2v2 2006), a gridded product with 2-min

resolution and derived from satellite altimeter and shipboard sounding data. Temperature and salinity data

employed to constrain the initial and boundary conditions of the model (section 4 and appendix C) are

obtained from the 1/4◦ resolution climatology (decadal averages, objectively analyzed) of the World Ocean

Atlas (Locarnini et al. 2013; Zweng et al. 2013). Climatologic values of potential temperature are first derived

from the values of in situ temperature, salinity, and depth of the Atlas using the algorithm developed by

Jackett et al. (2004) and assuming 1 dbar = 1 m. Potential temperature and salinity data at model levels

are then obtained from their respective climatologic values by linear interpolation (and extrapolation, where

needed). Note that the longitudes and latitudes of model grid points are set to coincide with the longitudes

and latitudes of the climatologic grid, so no horizontal interpolation is necessary.

Two types of satellite data sets are used in this study. First, surface wind stresses used to provide the

mechanical forcing to the model come from the Scatterometer Climatology of Ocean Winds, SCOW (Risien
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and Chelton 2008). The monthly means of zonal and meridional wind stresses, available at 1/4◦ resolution,

are averaged to produce an annual mean field. The annual mean wind stresses at a given model grid point are

then obtained from the closest values of the climatologic fields. Second, observations of dynamic topography

are used in order to test the modeled circulation. Monthly observations of sea surface height (SSH) between

1993–2012 are derived from satellite altimetry maps prepared by Ssalto/Duacs and distributed by Aviso+,

with support from CNES (https://www.aviso.altimetry.fr). These observations are averaged to produce

a multi-year annual mean field which is compared to model results.

Finally, horizontal velocity data from line W, between the New England continental shelf and Bermuda,

and coinciding with the western segment of GA03 (Fig. 3), are used to provide another test of the modeled

circulation. Velocity measurements along line W were obtained from shipboard deployments of Lowered

Accoustic Doppler Current Profilers and from moored profiler and current meters between 2004 and 2014

(Toole et al. 2017). The velocity data used in this study are 10-yr averages derived by averaging daily profiles

of subinertial-filtered velocity (note that the eastern-most mooring only contains data between 2008 and

2014, so only 6-yr averages are used for that mooring). The daily profiles were constructed by combining

moored profiler and current meter data from six moorings deployed along line W (John Toole, personal

communication).
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Fig. 3. Map of the study area showing the location of GEOTRACES stations (red stars with numerals),

pre-GEOTRACES stations (red stars with letters), and nephelometer and transmissmeter stations

(circles). Black lines are isobaths of 200, 1000, and 3000 m, and blue arrows show schematic pathways of
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the Gulf Stream (GS), Deep Western Boundary Current (DWBC), Northern Recirculation Gyre (NRG),

and Subtropical Gyre (SG). Also shown are the approximate locations of Bermuda (BER), the New

England Seamounts (NES), and the Sohm Abyssal Plain (SAP). The green line protruding from the

continental shelf and slope south of New England is line W.

b. Radionuclide Data

The 230Th and 231Pa activity data considered in this study originate from both pre-GEOTRACES

programs and the GA03 section (Table 1).
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Table 1. Thorium-230 and Protactinium-231 Data Used in this Study

station latitude longitude #a 230Thd # 230Thp # 231Pad # 231Pap
berror reference

CMME-13 32.76◦N 70.78◦W 8 8 11 0 1σ Cochran et al. (1987)

S1 36.05◦N 74.43◦W 11 10 19 0 2σ Guo et al. (1995)

EN407-3 39.47◦N 68.37◦W 11 0 0 0 2σ Luo et al. (2010)

EN407-4 38.6◦N 68.89◦W 19 0 0 0 2σ Luo et al. (2010)

EN407-6 39.73◦N 69.75◦W 19 0 0 0 2σ R. François (pers. com.)

BATS 32◦N 64◦W 19 0 0 0 2σ R. François (pers. com.)

OC278-2 37◦N 69◦W 11 0 0 0 2σ R. François (pers. com.)

OC278-3 33◦N 69◦W 11 0 0 0 2σ R. François (pers. com.)

OC278-4 36◦N 68◦W 10 0 0 0 2σ R. François (pers. com.)

OC278-5 38◦N 70◦W 11 0 0 0 2σ R. François (pers. com.)

GT11-01 39.69◦N 69.81◦W 25 10 25 10 1σ Hayes et al. (2015a)

GT11-02 39.35◦N 69.54◦W 17 12 17 12 1σ Hayes et al. (2015a)

GT11-03 38.67◦N 69.10◦W 20 12 20 12 1σ Hayes et al. (2015a)

GT11-04 38.09◦N 68.70◦W 16 12 16 12 1σ Hayes et al. (2015a)

GT11-06 37.61◦N 68.39◦W 20 12 21 12 1σ Hayes et al. (2015a)

GT11-08 35.42◦N 66.52◦W 17 12 17 12 1σ Hayes et al. (2015a)

GT11-10 31.75◦N 64.17◦W 28 12 28 11 1σ Hayes et al. (2015a)

GT11-12 29.70◦N 56.82◦W 18 12 18 12 1σ Hayes et al. (2015a)

GT11-14 27.58◦N 49.63◦W 21 12 21 11 1σ Hayes et al. (2015a)

259

260

a number of observations. b σ is the standard error for data from R. François (pers. com.) and the standard

deviation for all other data.

Radionuclide data in both dissolved and particulate forms are used and displayed in Appendix D (Fig.

A1–A7).
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1) Thorium-230

Measurements of 230Thd from pre-GEOTRACES cruises generally show an increase with depth in the

upper 2500–3000 m of the water column (Fig. A1). Below 2500–3000 m, stations sampled during these cruises

feature either uniform 230Thd or a 230Thd decrease with depth. To our knowledge, prior to GEOTRACES,

only two studies reported 230Thp measurements in the investigated region (Fig. A1). Cochran et al. (1987)

published 230Thp data for a station in the Hatteras Abyssal Plain, and Guo et al. (1995) reported 230Thp

measurements from a station off Cape Hatteras in the Middle Atlantic Bight. The 230Thp activities measured

at both stations generally increase with depth.

The 230Thd,p data collected along GA03 and used in this study have been described by Hayes et al.

(2015a), so only a brief overview is provided below. Broadly, 230Thd increased with depth in the upper part

of the water column at all stations (Fig. A2). At the deepest stations, the 230Thd data show a continued

increase with depth down to 3000–4000 m, where vertical gradients of 230Thd change sign. These inversions

are particularly noticeable at stations GT11-04 to GT11-10. At station GT11-12 (east of Bermuda), 230Thd

below ∼ 4000 m tend to be more uniform compared to the activities measured at stations west of Bermuda.

Similarly to 230Thd data, 230Thp data from GA03 generally show an increase with depth (Fig. A3). Stations

GT11-06, GT11-10, and GT11-12 show indications of a reversal in the vertical 230Thp gradient near 2000–

3000 m, with measurements presenting a local maximum in the deepest sample(s), although 230Thp data from

GT11-10 and GT11-12 also display relatively large dispersion and (or) uncertainties. Particularly spectacular

are the extremely large 230Thp activities measured on four near-bottom samples at stations GT11-04 and

GT11-08. The 230Thp activities in these samples approach or exceed 1 dpm m−3, which is larger by one to

two orders of magnitude than 230Thp activities measured at similar depths at other stations and larger than

230Thd activities measured on the same or nearby samples at the same stations.

2) Protactinium-231

Only a few measurements of 231Pa in the western North Atlantic existed prior to GEOTRACES (Fig.

A4). Luo et al. (2010) reported 231Pad profiles at two locations at 38.5◦N and 39.5◦N near the western

boundary, which generally show an increase with depth down to 2000–2500 m and a decrease with depth

below. Similarly to 230Thd,p data, the 231Pad,p data obtained along GA03 and used in this study have already

been discussed (Hayes et al. 2015a). As for 230Thd data, 231Pad data show an increase with depth in the

upper part of the water column at all stations (Fig. A5). At the deepest stations, measurements of 231Pad

present maxima between 2000–3000 m and a decrease with depth below. Measurements of 231Pap display an

increase with depth down to 2000–3000 m and a decrease with depth below except for the deepest samples
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(Fig. A6). As for 230Thp, stations GT11-04 and GT11-08 show extreme 231Pap values in near-bottom

samples which largely exceed 231Pap and 231Pad measured on the same or nearby samples.

c. Optical Data

A relatively large number of optical measurements from nephelometers and beam transmissometers are

available in the western North Atlantic (for a recent synthesis, see Gardner et al. (2017)). These instruments

can be used to measure the distribution of, respectively, light attenuation and light scattering with vertical

resolutions of approximately 2 m and 100-250 m, respectively (note that the range for the light scattering

resolution reflects the dependence of the resolution on the rate at which the nephelometer is lowered in

the water column;Gardner et al. (1985b)). From measurements of these optical properties, the vertical

distribution of PM concentration (P , mg m−3) can be estimated using empirical calibrations.

The following approach is applied to derive a field of PM concentration for use in the geochemical

component of the model. First, the light scattering and light attenuation data compiled by Gardner et al.

(2017, 2018b) are converted into P estimates using calibration formulae reported by Gardner et al. (2017)

for light scattering and Gardner et al. (2018b) for light attenuation. In addition, the light attenuation data

from GA03 and available from the GEOTRACES Intermediate Data Product (Schlitzer et al. 2018) are used

and converted to P estimates following Gardner et al. (2018b). Second, the PM concentrations at locations

where optical data are available are interpolated linearly at the model grid levels. The errors produced

by vertical interpolation are expected to be generally small given the high vertical resolution of the optical

profiles and are neglected in this work. Note that the model is based on terrain-following (s) coordinates, not

depth coordinates (section 3), so that the levels at which P values are interpolated occur along s-surfaces,

not depth surfaces. Finally, the interpolated P values are mapped along each s-surface using a minimum

variance (Gauss-Markov) procedure in order to obtain an estimate of PM concentration at each model grid

point along that surface (for details see Appendix A). Note that in this study the PM concentrations at

model grid points are fixed and not allowed to be transported by advection or mixing.

3. Ocean Model

a. Domain

The model domain considered in this study is the western North Atlantic north of 28◦N and west of

55◦W (Fig. 3). It is bounded in the west by the 200-m isobath, which is taken as a closed boundary. The

other two boundaries – the latitude of 28◦N and the longitude of 55◦W – are open. The model grid has a
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horizontal resolution of 1/4◦ and includes 31 vertical levels. It is determined by a trade-off between a desire

to simulate the circulation with greatest detail possible and the large computational cost associated with

the simulation of steady-state distributions of 230Th and 231Pa (section 4). The vertical levels of the model

are s-coordinates defined from

z − η
s = . (1)

h+ η

Here z is the local depth, η is the free surface elevation, and h = h(x, y) is the water depth where x and y

denote, respectively, the longitude and latitude coordinates in the domain. The model topography h(x, y)

is derived by averaging the bathymetric data from ETOPO2v2 (2006) in model grid cells.

b. Physical Component

The physical component of the model is the Princeton Ocean Model (POM) – a primitive-equation model

based on s-coordinates and a free surface (Blumberg and Mellor 1987; Mellor 2002). The computer code

applied in this study is pom2k.f. Note that in the present application, the variation of the Coriolis parameter

with latitude is taken into account according to f = fo +β(y− yo), where fo = 2Ω sinφo, β = (2Ω/r) cosφo,

Ω = 7.29×10−5 s−1 is Earth angular velocity, r = 6371 km is the Earth radius, φo = 36.375◦N, and yo is the

value of y corresponding to the latitude φo. The basic equations of POM are the governing equations for the

zonal velocity component (u) and the meridional velocity component (v), the hydrostatic approximation, the

governing equations for (potential) temperature (T ) and salinity (S), and the condition of incompressibility.

These equations are complemented with a nonlinear equation of state (Mellor 1991).

c. Geochemical Component

The geochemical component of the model includes governing equations for 230Th and 231Pa in both the

dissolved phase and the particulate phase. The dissolved and particulate activities in the model are intended

to represent the dissolved and particulate activities as measured on water samples and defined operationally

by filtration. The basic equations of the geochemical component are ( )
∂Ad ∂ ∂Ad

+ u · ∇Ad = λAπ + k−1Ap − k1Ad + κT + Fd, (2a)
∂t ∂z ∂z( )

∂Ap ∂Ap ∂ ∂Ap
+ u · ∇Ap + wp = k1Ad − k−1Ap + κT + Fp. (2b)

∂t ∂z ∂z ∂z

Here Ad (Ap) is the activity of 230Th or 231Pa in dissolved (particulate) form expressed in dpm m−3, u is

the fluid velocity, wp is the particle settling speed, λ is the radioactive decay constant for 230Th or 231Pa,

A is the activity of the radioactive parent (234 230
π U for Th and 235U for 231Pa), k1 (k−1) is a first-order
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apparent rate constant for Th or Pa adsorption onto particles (Th or Pa desorption from particles), κT

is a vertical turbulent diffusivity, and the terms (Fd, Fp) denote the effects of horizontal mixing. Clearly,

t is time and ∇ = x̂(∂/∂x) + ŷ(∂/∂y) + ẑ(∂/∂z) is the gradient operator where (x,ˆ ŷ, ẑ) are unit vectors.

Vertical and horizontal mixing processes are represented as for temperature and salinity: the diffusivity

κT is obtained from a turbulent closure scheme (Mellor and Yamada 1982) which involves the solution of

governing equations for turbulent kinetic energy (q2/2) and for q2l, where l is a turbulence length scale, and

the terms (Fd, Fp) are parameterized according to Smagorinsky (1963).

Note that the radioactive decay terms are omitted in (2a-2b). The half-lives of 230Th and 231Pa exceed

by several orders of magnitude the time scales of solid-solution equilibration of Th and Pa in laboratory

experiments (e.g., Nyffeler et al. (1984); Geibert and Usbeck (2004)). Likewise, the value of λ = 9.17× 10−6

yr−1 for 230Th is very small compared to observational estimates of k and k of ≥ O(10−1 1
−1 yr −1 ) for Th

in oceanic waters (for a compilation see Marchal and Lam (2012); Lerner et al. (2017)).

The influence of particle concentration on particle scavenging is accounted for in the model as follows.

Both theoretical considerations (e.g., Honeyman et al. (1988)) and empirical evidence (e.g., Lerner et al.

(2017)) suggest that the apparent rate constant for metal adsorption onto particles, k1, increases with the

(bulk) concentration of particles. In our model, k1 is set to vary with particle concentration according to

k1(x, y, z) = k1,b + k′1P (x, y, z). (3)

Here P (x, y, z) is the particle concentration estimated from the optical measurements (Appendix A), k′1

describes the variation of the adsorption rate constant with particle concentration, and k1,b is a background

value intended to account for the effect of particles that are not detected by the optical instruments (for a

discussion of instrumental sensitivities, see, e.g., McCave (1986) and Boss et al. (2009)).

Three comments are in order regarding the geochemical component of the model. First, in a more

general treatment, k1 would be a function of P b where the exponent b could be different from one. From

a compilation of k1 estimates reported in the literature, Honeyman et al. (1988) showed that k1 appears

to be proportional to P b with b = 0.51 (their Table 2). These authors argued that such a variation of

the adsorption rate constant with particle concentration could explain the particle concentration effect. In

contrast, in their analysis of Th isotope and particle data collected east of Bermuda along GA03, Lerner

et al. (2017) estimated that b ranges from 0.95 to 1.62 (their Table 4), depending on the technique used to

regress lnk1 against lnP and on the application of a smoothing condition on the vertical distribution of the

rate parameters. Consistent with the latter result, a value of b = 1 is assumed in this study.

Second, in contrast to k1, the desorption rate constant (k−1) and the particle settling speed (wp) are

assumed to be independent of particle concentration or any other particle (or water) property. The k−1
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values estimated from Th isotope and particle data at GA03 stations east of Bermuda (Lerner et al. 2017)

do not exhibit a consistent vertical trend, except at four stations where k−1 appears to decrease with depth.

Near-surface values of k−1 estimated at these stations are also high relative to the other stations. The wp

values estimated by Lerner et al. (2017) tend to be larger and display enhanced vertical variability below

2000 m, except at the TAG hydrothermal vent of the MAR, where their wp estimates are low relative to

the other stations. In the present study, k−1 and wp are taken as uniform throughout the model domain for

simplicity.

Finally, the rate parameters (k , k′ , k ) are allowed to be different for 230Th and 231
1,b 1 −1 Pa in the model

in order to account for the differences in the sorption kinetics of Th and Pa in oceanic waters (e.g., Moran

et al. (2002); Hayes et al. (2015a)). The particle settling speed, wp, is also allowed to be different for the two

nuclides, a treatment suggested by the fact that (i) Th and Pa may be carried by different particulate phases

in the ocean (e.g., Chase et al. (2002); Geibert and Usbeck (2004); Roberts et al. (2009); Chuang et al.

(2013)), and (ii) different particles types may have different sinking speeds (e.g., biogenic silica, lithogenic

material, and calcium carbonte may sink much more rapdily than particulate organic carbon (Armstrong

et al. 2001; Klaas and Archer 2002)). The value of wp for 230Th is determined by fitting (using ordinary

least-squares) the equation 230Thp(z) = 230Thp(0) + λ234Th-230Uz/wp to a composite profile compiled from all

230Thp data in the upper 3000 m for stations GT11-01 to GT11-12 (not shown). This popular approach to

constrain wp(Th) from 230Thp data (e.g., Bacon and Anderson (1982); Krishnaswami et al. (1976, 1981);

Rutgers van der Loeff and Berger (1993); Scholten et al. (1995); Venchiarutti et al. (2008)) yields an estimate

of wp(Th) of 1800 m yr−1, the value used in our simulations. In contrast, the value of wp for 231Pa, which is

generally less sensitive to particles and thus more strongly influenced by circulation than 230Th, is determined

by a trial-and-error approach until good agreement with 231Pad,p data is achieved. Thus, the value of wp

for 230Thp is determined by disregarding the effects of advection and mixing, whereas the value of wp for

231Pap is determined by taking such effects into account.

A trial-and-error approach is also used to determine the value of the other geochemical parameters with

two exceptions: k1,b for Th is fixed to 0.4 yr−1, a value consistent with k1 estimates for GA03 stations east

of Bermuda in waters with low particle concentration (Lerner et al. 2017), and k1,b for Pa is fixed to a lower

value, 0.04 yr−1, consistent with the different particle sensitivities of Pa and Th in seawater (e.g., Moran

et al. (2002); Hayes et al. (2015a)). Values for each parameter in the geochemical component of the model

are listed in Table 3.
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d. Boundary Conditions

The conditions imposed at the horizontal and lateral boundaries of the model domain are summarized

below (for details see appendices B-C). Consider first the horizontal boundaries. At the sea surface, the

model is forced with an annual mean wind field derived from satellite scatterometry (Risien and Chelton

2008), and the simulated values of temperature and salinity in the surface layer are restored to annual mean

fields from the World Ocean Atlas (Locarnini et al. 2013; Zweng et al. 2013) (section 2a). The restoring

approach implies that the surface (T, S) fields simulated by the model will not depart too markedly from the

climatologic fields – a desirable result – with the caveat that the modeled variability due to eddy activity

will be muted to some degree. At the bottom, a shear stress condition is applied and a condition of no flux

is specified for 230Thd,p and 231Pad,p.

Consider then the lateral boundaries. The western boundary (aligned with the 200-m isobath) is a

closed boundary. This treatment implies that the model simulations presented in this paper will not rep-

resent the exchanges of momentum, energy, and material between the continental shelf and the continental

slope (e.g., Garvine et al. (1988); Lozier and Gawarkiewicz (2001); Gawarkiewicz et al. (2004); Churchill

and Gawarkiewicz (2009)). At the other two lateral boundaries (along 28◦N and along 55◦W), radiation

conditions are specified in order to minimize the reflection of perturbations generated within the domain.

Along specific segments of these boundaries, inflows and outflows representing the Gulf Stream, the DWBC,

and Sargasso Sea water entering or exiting the domain are also applied, following previous regional model

studies of the western North Atlantic (e.g., Thompson and Schmitz (1984); Ezer (2016a,b)). Note that, at

the DWBC inflow, the boundary values of 230Th and 231Pa are based on measurements in deep waters in

the Labrador Sea, except for 231Pad whose value exceeds these measurements, which we found produced a

reference solution that more closely agreed with the available radionuclide measurements. At all other lo-

cations along the open boundaries, 230Th and 231Pa values are based on measurements at station GT11-14,

which is situated to the east of the model domain (Appendix C).

e. Method of Solution

The differential equations of the model are solved as follows (for details see Blumberg and Mellor (1987);

Mellor (2002)). First, the differential equations are expressed in terrain-following (s) coordinates. The

particle settling speed wp, which appears in equation (2b), is converted into an equivalent speed in s-

coordinates using the relationship,

ωp = wp cos θ, (4)
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where θ is the angle between the vertical axis and the normal to the s-surface. Here cos θ is approximated

from

1
cos θ = √ , (5)

(∂z/∂x)2s + (∂z/∂y)2s + 1

where the partial derivatives are evaluated using central differences. Second, the dynamical equations of

POM are separated into equations for slow motions (internal mode) and fast motions (external mode). This

‘mode splitting’ technique allows the calculation of the free surface elevation at relatively small computational

cost. Finally, the differential equations represented in s-coordinates are solved using finite differences on a

staggered C grid. The advection terms in the governing equations for (T, S,A ,A , q2 2
d p /2, q l) are solved using

a central difference scheme, and these equations are integrated forward in time using a leap frog scheme with

an Asselin filter. The equations for the external mode are integrated with a time step of 15 s and the

equations for the internal mode, including the activity equations (2a–2b), are integrated with a time step of

450 s. Unless stipulated otherwise, the model parameters take the values listed in Tables 2–3.
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Table 2. Parameters of the physical model component

Physical Parameters

value units

ρo reference density 1025 −3kg m

g acceleration due to gravity 9.806 −2m s

C Smagorinsky coefficient 0.2 1

κ von Kármán constant 0.4 1

κu,o background vertical viscosity 0 2 −1m s

κT,o background vertical diffusivity 0 2 −1m s

Pr turbulent Prandtl number 5 1

zr bottom roughness parameter 0.01 m

τ restoring time scale for SST and SSS 14.4 d

Numerical Parameters

value units

∆tE time step for external mode 15 s

∆tI time step for internal mode 450 s

∆s step interval for advective termsa 5 1

hmax maximum depth in radiation condition 200 m

umax maximum velocity for CFL violation 100 −1m s

c constant of Asselin filter 0.1 1

α weight for sea surface slope termb 0 1

451
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a Step interval during which the advective terms of the external mode are not updated

b Weight used in the external mode equations

453

454

20



Table 3. Parameters of the geochemical model component

value units

λTh-230 radioactive decay constant of 230Th 9.17× 10−6 −1yr

λPa-231 radioactive decay constant of 231Pa 2.12× 10−5 −1yr

234U activity of 234U 2750 −3dpm m

235U activity of 235U 108 −3dpm m

k1(Th) adsorption rate constant for Th variable −1yr

k1(Pa) adsorption rate constant for Pa variable −1yr

k1,b(Th) background value of k1(Th) 0.4 −1yr

k1,b(Pa) background value of k1(Pa) 0.04 −1yr

k′1(Th) sensitivity of k1(Th) to particle concentration 0.04 −1 −1 3yr mg m

k′1(Pa) sensitivity of k1(Pa) to particle concentration 0.02 −1 −1 3yr mg m

k−1(Th) desorption rate constant for Th 3.69 −1yr

k−1(Pa) desorption rate constant for Pa 18.45 −1yr

wp(Th) settling speed of 230Thp 1800 −1m yr

wp(Pa) settling speed of 231Pap 2400 −1m yr
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4. Reference Solution

A large number of experiments have been conducted with the model in an effort to reproduce the

circulation and the radionuclide distributions observed in the western North Atlantic. In this section, we

describe a particular model solution, obtained with parameter values listed in Tables 2–3, which shows

relatively good agreement with the observations. This solution is called the ‘reference’ solution below. The

word ‘reference’ is meant to imply that this solution is used as a pivot against which results from other

simulations are compared, not that it is the most accurate simulation that could be obtained from the

model.

The model is integrated forward in time until the circulation and the radionuclide distributions reach

quasi-steady states. The initial conditions of the model are the following: (i) the ocean is at rest (u = 0,

q2 = 0, and q2l = 0) with a flat surface (η = 0), (ii) the (T, S) distributions are set to the annual mean

distributions from the World Ocean Atlas (Locarnini et al. 2013; Zweng et al. 2013), and (iii) the 230Thd,p
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and 231Pad,p distributions are specified from idealized vertical profiles which broadly reproduce data from

station GT11-14 (located east of the domain along GA03) and which are also used as lateral boundary

conditions (Appendix C; Fig. A7). The model is first integrated diagnostically for a period of 10 days, with

(T, S, 230Thd,p,
231Pad,p) fixed to their initial values, and then prognostically for a period of 2545 days (∼

7 yr), with (T, S, 230Thd,p,
231Pad,p) allowed to vary according to their respective governing equations. At

this time, the domain averages of kinetic energy ρo|u2|/2, 230Thd,p, and 231Pad,p have reached quasi-steady

values (Fig. 4).
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Fig. 4. Time series of the domain-averaged kinetic energy, 230Thd,
230Th 231

p, Pad, and 231Pap in the

reference solution
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Notice that the integration time needed to attain quasi-steady state is longer for 230Th and 231Pa (∼ 6 yr)

than it is for the mean kinetic energy (∼ 1 yr). Hence the model results reported in this paper are averages

for the last 2190 days (6 yr) of the integration for sea surface elevation and velocities, and for the last 365

d (1 yr) of the integration for 230Th and 231
d,p Pad,p.

a. Circulation

1) Sea Surface Elevation

The distribution of the sea surface elevation simulated by the model is compared to the distribution of

the multi-year annual mean SSH derived from satellite altimetry (Fig. 5).
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CH

mean elevation (1993-2012)

CH

model elevation

487

Fig. 5. Averages of sea surface height (m) as observed from satellite altimeter data during the period

1993-2012 (top) and as simulated in the reference solution (bottom). The average pathway of the Gulf

Stream coincides with the yellow band (upper panel) and “CH” stands for Cape Hatteras.

The SSH distribution from satellite altimeters reveals the average pathway of the Gulf Stream during the
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observation period (1993–2012). Maxima in SSH occur just south of the Gulf Stream, downstream of the

region where this separates from the margin near Cape Hatteras, and minima in SSH occur in the region

between the Gulf Stream and the continental slope east of Cape Hatteras. The northward depression in SSH

across the Gulf Stream is of the order of 1 m and occurs on an horizontal scale of O(100 km). The pattern

of sea surface elevation simulated by the model is broadly consistent with the observed pattern, although

the magnitude of the SSHs and the gradients of SSH across the Gulf Stream as observed by altimeters are

generally underestimated by the model. The relatively small SSH gradients in the simulation implies that the

strength of the Gulf Stream as predicted by the model may be lower than observed, an inference consistent

with a comparison with velocity data along line W (see next section).

The standard deviations of SSH values derived by satellite altimetry are compared with the standard

deviations of sea surface elevation calculated by the model (Fig. 6).
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Fig. 6. Standard deviation of sea surface height (m) as observed from satellite altimeter data during the

period 1993-2012 (top) and as simulated in the reference solution (bottom). The average pathway of the

Gulf Stream coincides with the yellow band (upper panel) and “CH” stands for Cape Hatteras.

As expected, the standard deviations observed by altimeters show the largest values along the average
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pathway of the Gulf Stream, which reflects the meandering and eddy activity of the Gulf Stream. Maxima

in standard deviations are also predicted in the vicinity of the Gulf Stream by the model, although the

standard deviations from the model are in general strongly underestimated compared to those observed.

Eddy variability is thus underpredicted by the model. Model-data differences in SSH (mean and standard

deviation) could be ascribed to various factors, such as insufficient spatial resolution of the model, the

restoring of surface (T, S) to climatologic fields, and the fact that model averages (6 yr) and data averages

(20 yrs) are not calculated over the same time span.

2) Horizontal Velocity

The horizontal velocities simulated by the model in the surface layer and at a depth of 3500 m are

displayed in Figure 7.
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Fig. 7. Field of horizontal velocity in the surface layer (top) and at a depth of 3500 m (bottom) simulated

in the reference solution. The horizontal arrow at the lower right outside each panel is the maximum speed
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in units of m s−1 in the corresponding field.

In the surface layer, the model simulates a strong current – the Gulf Stream – which flows northward along

the margin. The simulated current detaches from the margin north of Cape Hatteras, i.e., too far to the north

compared to the observations (Fig. 5), and then flows to the northeast as a meandering structure. Inaccurate

Gulf Stream separation has been a long-standing problem with many models, although simulations generally

improve when high resolution is used (e.g., Ezer (2016b); and references therein). The largest speeds in the

modeled Gulf Stream reach O(1 m s−1), which is consistent with observations from extensive field programs

(e.g., Meinen and Luther (2016)). At a depth of 3500 m, the model predicts a relatively strong current

flowing to the southwest along the boundary – the Deep Western Boundary Current. The modeled DWBC

presents distinct cores at some locations but remains generally noticeable all along the western boundary.

The simulated horizontal velocities between the New England continental shelf and Bermuda are com-

pared to the velocities observed during the line W program (Fig. 8).
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Fig. 8. Distribution of horizontal velocity components between the New England continental shelf and

Bermuda as measured during the line W program (top) and as simulated in the reference solution

(bottom). At the top of each panel, red vertical lines show the position of GA03 stations GT11-01 to

GT11-06, and grey vertical lines show the position of mooring locations. Coordinates along the horizontal
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axis are distances from 40.125◦N,70.125◦W (line W data from Toole et al. (2017)).

The observed velocity components both parallel and perpendicular to line W show the largest magnitudes in

the vicinity of the Gulf Stream, i.e., at a distance of ≥ 200 km from the shelf break. The Gulf Stream is the

most conspicuous feature along the section, showing flow to the northeast with velocity maxima in the upper

∼ 1000 m. Below the Gulf Stream and along the continental rise is the Deep Western Boundary Current,

which flows to the southwest and is characterized by much lower vertical shears and speeds compared to the

Gulf Stream. In accordance with these observations, the model simulates strong currents in the upper ∼

1000 m and along the western boundary. Whereas the simulated speeds in the Gulf Stream and DWBC have

the observed orders of magnitude, the horizontal velocities in the Gulf Stream (DWBC) are underestimated

(overestimated) by the model compared to the observations. Moreover, both currents in the model simulation

occur north of their respective observed locations. Again, model errors such as due to too coarse spatial

resolution and surface thermodynamical forcing may contribute to the differences between the simulation

and the observations.

b. Radionuclide Activities

We compare in this section the distributions of 230Thd,p and 231Pad,p calculated in the reference solution to

those observed from pre-GEOTRACES campaigns and along the western segment of GA03. Model results are

compared with both (i) station-averaged profiles of 230Thd,p and 231Pad,p computed by linearly interpolating

all radionuclide data at the same vertical levels and averaging the interpolated data along each vertical

level, and (ii) measured radionuclide profiles at individual stations. The rationale for considering both (i)

and (ii) is that a model driven by climatologic forcing may better reproduce station-averaged profiles than

profiles measured at specific locations and specific times. Notice that in the comparison between measured

and simulated radionuclide activities, the extreme 230Thp and 231Pap values measured on two samples at

stations GT11-04 and GT11-08 (Figs. A3 and A6) are excluded.

The station-averaged profiles of 230Th 231
d and Pad display a reversal in activity gradients at mid-depth

(Figs. 9 and 10), as expected from the inspection of the profiles measured at the individual stations (Figs.

A1-A2 and Figs. A4-A5). Note also the relatively high 230Thd and 231Pad averages at the three deepest

levels, below 4500 m. These averages are based on data from a relatively small number of stations and are

strongly influenced by data from station GT11-12, situated at > 500 km to the southeast of Bermuda (Fig.

3). Notably, the 230Thd activities measured below ∼ 4500 m at station GT11-12 exceed 0.8 dpm m−3, which

is larger by a least a factor of two than the 230Thd activities measured below ∼ 4500 m at the other deep

stations of GA03 (Fig. A2). The deepest value of 230Thd shown in figure 9 comes from station GT11-12 only,
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whilst the two values directly above are averages of data from GT11-12 as well as a few other stations. As a

result, the deepest value 230Thd is high, and the other two values are also relatively high and characterized

by large standard errors (Fig. 9). Speculatively, the much higher 230Thd and 231Pad activities measured near

the bottom at GT11-12 compared to other stations of GA03 stem from the much weaker BNL at GT11-12,

as revealed by the sections of the beam attenuation coefficient for particles (Fig. 3 of Hayes et al. (2015a))

and of the bulk particle concentration (Fig. 5 of Lam et al. (2015)).
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Fig. 9. Profile of station-averaged 230Thd (top) and 230Thp (bottom) as calculated from pre-GEOTRACES

and GA03 measurements (black circles) and as simulated in the reference solution (red line). The circles

show averages of measurements from several stations with the following exceptions: for 230Thd the

shallowest circle is a measurement from a single station (OC278-5), and for 230Thd,p the deepest circle is a

measurement from a single station (GT11-12). The horizontal bars show the standard errors of the
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averages (measurement error for the shallowest 230Thd measurement and the deepest 230Thd,p

measurements; Table 1). The extreme values of 230Thp near the bottom of stations GT11-04 and GT11-08

are excluded from the station-averaged profile of the measurements.
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Fig. 10. Profile of station-averaged 231Pad (top) and 231Pap (bottom) as calculated from

pre-GEOTRACES and GA03 measurements (black circles) and as simulated in the reference solution (red

line). The circles show averages of measurements from several stations with the following exceptions: for
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231Pad (231Pap), the three (four) deepest circles show measurements from a single station (GT11-12). The

horizontal bars show the standard errors of the averages (measurement error for the three (four) deepest

measurements of 231Pad (231Pap); Table 1). The extreme values of 231Pap near the bottom of stations

GT11-04 and GT11-08 are excluded from the station-averaged profile of the measurements.

1) Distribution of 230Th

The vertical profile of 230Thd obtained by averaging the available data in the study area is reproduced

rather closely in the reference solution (Fig. 9). The solution shows both the 230Thd increase with depth

in the upper ∼ 3000 m and the 230Thd decrease below. The good agreement of the model with the data

holds over most of the water column, except for the three deepest observations. In contrast to 230Thd,

and consistent with the observed averages, the station-averaged 230Thp simulated by the model increases

generally downwards over the entire ocean depth, although the observed 230Thp are generally overestimated

by the model (Fig. 9).

Similarly to the station averages, the simulated 230Thd and 230Thp profiles compare in general favourably

with the observed profiles at individual stations (Figs. A8 and A10). Noticeable differences with the

observations occur at pre-GEOTRACES station S1 (Guo et al. 1995) where 230Thp data in the upper 1000

m of the water column are underestimated (Fig. A8), and at station GT11-12 where 230Thd data below ∼

3000 m are also underpredicted (Fig. A9). The reference solution generally overestimates 230Thp at GA03

stations, particularly (i) below ∼ 2000 m at stations GT11-03, GT11-04, GT11-06, and GT11-08 and (ii)

over most of the water column at the deeper stations GT11-10 and GT11-12 (Fig. A10). Thus, whereas the

reference solution captures reasonably well the station-averaged profiles of 230Thd,p in the western North

Atlantic, it is less successful at explaining the observations made at individual stations.

For future reference, we provide measures of the (dis)agreement of the reference solution with activity

measurements from pre-GEOTRACES campaigns and the western segment of GA03 (Fig. 11).
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Fig. 11. Scatter plots of measured radionuclide activities versus simulated radionuclide activities in the

reference solution. Shown in each panel are the squared Pearson correlation coefficient (r2), the p value of

the correlation, and the number of measurements (n). In each panel, the black line is the line of perfect

agreement. For panel (b) and (d), the extreme measured values of 230Thp and 231Pap near the bottom of

stations GT11-04 and GT11-08, along with the corresponding model values, are excluded from the scatter

plot.

We find that the reference solution accounts for 85% of the variance in the 230Thd measurements (n = 254)

and for 49% of the variance in the 230Thp measurements (n = 98). The correlation between measured and

simulated activities is very significant for both the dissolved phase and the particulate phase (p < 0.01). The

root mean square difference between the measured and simulated activities amounts to 0.078 dpm m−3 for

230Th and to 0.028 dpm m−3d for 230Thp (Table 4).

Table 4. Root Mean Square Difference Between Observed & Simulated Activitiesa
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230Thd
230Thp

231Pad
231Pap

n 238 100 161 84

reference solution 0.078 0.028 0.039 0.001

k′1 / 2

k′1 × 2

0.086

0.086

0.025

0.037

0.041

0.037

0.001

0.003

DWBC inflow = 10 Sv

DWBC inflow = 40 Sv

0.081

0.076

0.030

0.029

0.040

0.037

0.002

0.002

Ad,p(DWBC inflow) / 2

Ad,p(DWBC inflow)× 2

0.078

0.165

0.025

0.041

0.033

0.110

0.001

0.002

uniform k1(Th) & k1(Pa) 0.075 0.043 0.041 0.002

Ad,p(DWBC inflow) / 2, DWBC inflow = 10 Sv 0.093 0.027 0.041 0.002

625

a All values in dpm m−3

2) Distribution of 231Pa

The station-averaged 231Pad for (pre-)GEOTRACES data are broadly reproduced in the reference solu-

tion in the upper 3000 m of the water column, but they are overpredicted at greater depths except near 5000

m (Fig. 10). The reversal in the vertical 231Pad gradient occurs deeper in the model simulation (at ∼ 4000

m) than in the observations (∼ 3000 m). As for 231Pad, the station-averaged 231Pap computed from GA03

data tend to be overestimated at most levels in the reference solution, except between about 2000–3000 m

where the simulation agrees closely with the observational averages. Note that the station-averaged profiles

of 231Pad,p are largely unaltered if wp for 231Pap is decreased from its reference value of 2400 m yr−1 to 1800

m yr−1, the value used for 230Thp (not shown). The simulated 231Pad profiles show in general the closest

agreement with the measured 231Pad profiles at individual stations in the upper ∼ 3000 m of the water
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column (Figs. A11 and A12). Below this depth, the model overestimates the 231Pad measurements, with the

notable exception of station GT11-12, where the observed 231Pad are rather closely reproduced below 3000 m

and underestimated between about 2000–3000 m. Inspection of 231Pap profiles at individual stations shows

that the largest differences between the simulated and observed 231Pap occur near the seafloor at stations

GT11-03 to GT11-08 and in the upper ∼ 2000 m at station GT11-10 (Fig. A13).

As for 230Thd,p, we quantify the (dis)agreement of the reference solution with (pre-)GEOTRACES mea-

surements of 231Pad,p activities (Fig. 11). The reference solution “explains” 81% of the variance in the

231Pad measurements (n = 167) and only 11% of the variance in the 231Pap measurements (n = 83). The

correlation between measured and simulated activities is very significant, even for the particulate phase

(p < 0.01). The root mean square difference between the simulated and observed activities amounts to 0.039

dpm m−3 for 231Pad and to 0.001 dpm m−3 for 231Pap (Table 4).

3) Comparison to Sediment 231Pa/230Th

The enhanced deposition of particle-reactive substances in ocean-margin sediments is often referred to as

‘boundary scavenging’ (Spencer et al. 1981). Anderson et al. (1994) found that deposition rates of 230Th and

231Pa measured during the SEEP-I and SEEP-II programs in the Middle Atlantic Bight exceed their local

rates of supply, consistent with boundary scavenging. However, they also found that the 231Pa/230Th activity

ratios of surface sediments are consistently less than the 231Pa/230Th production ratio of 0.093, which is at

odds with the notion that 231Pa should be preferentially deposited over 230Th in marginal sediments (231Pa

is generally less prone to particle scavenging than 230Th and thus more likely to be transported away from

its production site). The authors postulated that the anomalous boundary scavenging of 230Th and 231Pa in

the Middle Atlantic Bight could be explained by the export from the region of fine-grained Mn-rich particles

that would scavenge greater portions of 231Pa 230
d than of Thd.

In this section, the distribution of 231Pap/
230Thp near the bottom (deepest grid point) which is simulated

in the reference solution is compared to surface sediment 231Pa/230Th data which are available in the western

North Atlantic (Table 5).
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Table 5. Surface sediment 231Pa/230Th data in the western North Atlantic.

core latitude longitude depth (m) 231Pa/230Th reference

OCE152-BC1 39.49◦N 70.57◦W 1126 0.082 Anderson et al. (1994)

OCE152-BC8 32.47◦N 70.58◦W 1596 0.071 Anderson et al. (1994)

OCE152-BC9 39.42◦N 70.55◦W 1981 0.091 Anderson et al. (1994)

OCE152-BC5 39.08◦N 70.56◦W 2691 0.063 Anderson et al. (1994)

EN123-BC4 39.48◦N 70.56◦W 1280 0.076 Anderson et al. (1994)

EN123-BC6 39.49◦N 70.55◦W 1643 0.066 Anderson et al. (1994)

EN123-BC3 39.35◦N 70.55◦W 2344 0.061 Anderson et al. (1994)

EN123-BC1 39.08◦N 70.55◦W 2736 0.053 Anderson et al. (1994)

EN179-BC5 37.38◦N 74.13◦W 384 0.127 Anderson et al. (1994)

EN179-BC2 37.37◦N 74.10◦W 892 0.050 Anderson et al. (1994)

EN179-BC3 37.38◦N 74.09◦W 1031 0.075 Anderson et al. (1994)

EN179-BC4 37.32◦N 74.02◦W 1318 0.071 Anderson et al. (1994)

EN179-BC7 37.25◦N 73.49◦W 1989 0.051 Anderson et al. (1994)

EN187-BC4 37.37◦N 74.13◦W 512 0.063 Anderson et al. (1994)

EN187-BC10 36.52◦N 74.37◦W 580 0.089 Anderson et al. (1994)

EN187-BC8 36.52◦N 74.34◦W 1020 0.053 Anderson et al. (1994)

EN187-BC5 37.37◦N 74.10◦W 1045 0.069 Anderson et al. (1994)

EN187-BC11 37.02◦N 74.34◦W 1125 0.062 Anderson et al. (1994)

EN187-BC9 36.52◦N 74.34◦W 1165 0.075 Anderson et al. (1994)

EN187-BC6 37.24◦N 73.5◦W 2000 0.055 Anderson et al. (1994)

OCE325-GGC5 33.7◦N 57.6◦W 4550 0.054 McManus et al. (2004)

VM26-176 32.76◦N 70.78◦W 1126 0.065 Yu (1994)
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The sediment 231Pa/230Th data used for this comparison originate from the compilation reported by

Henry et al. (2016) and come for the most part from the SEEP-I and SEEP-II programs (Anderson et al.

1994).

It is seen that the near-bottom 231Pap/
230Thp ratio in our reference solution show relative minima between

1000–3000 m in the Middle Atlantic Bight; east of the 3000-m isobath, the simulated 231Pap/
230Thp present

maxima in multiple regions predominately located in the northern part of the domain (Fig. 12).
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Fig. 12. Distribution of near-bottom 231Pap/
230Thp in the reference experiment. The filled circles are

surface sediment data (Table 5), and the solid black lines are the 200 m, 1000 m, and 3000 m isobath,

respectively.

The simulation of 231Pa /230p Thp ratios below the production ratio of 0.093 along the margin is consistent

with measurements of surface sediment 231Pa/230Th in the Middle Atlantic Bight, suggesting that the ex-

port of fine-grained Mn-rich particles (Anderson et al. 1994) may not be necessary to explain the anomalous

boundary scavenging observed in the Bight. In other words, sediment 231Pa /230p Thp ratios below the pro-

duction ratio may also arise from the joint effects of ocean circulation and particle scavenging as represented

in our model. The dissolved and particulate 231Pa/230Th ratios at the DWBC inflow are set to, respec-

tively, 0.22/0.40 = 0.55 and 0.003/0.03 = 0.10 (Appendix C), i.e., to values that exceed the 231Pa/230Th

production ratio. Consequently, the near-bottom 231Pap/
230Thp ratios below the production ratio which are

simulated in the Middle Atlantic Bight do not reflect the 230Th 231
d,p and Pad,p values set at the bound-

ary but should rather result from processes operating within the model domain. On the other hand, the

sediment 231Pa/230Th show a positive but insignificant relationship with the simulated 231Pa /230p Thp (Fig.

13), indicating that the ability of the model to explain the variability of sediment 231Pa/230Th within the

Bight is very limited. Various factors could explain the small correlation between the simulated near-bottom

231Pa 230 231 230
p/ Thp and the measured sediment Pa/ Th, such as (i) model errors, including errors due to the

omission of the process postulated by Anderson et al. (1994), (ii) bioturbation within the sediment column,

and (iii) sediment lateral redistribution (e.g., Kretschmer et al. (2010, 2011)).
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Fig. 13. Scatter plot of surface sediment 231Pa/230Th data versus the near-bottom 231Pap/
230Thp

simulated near the corresponding data location in the reference experiment. The regression coefficient

(slope) is 0.35± 0.36 (one standard error) and the Pearson correlation coefficient is 0.21 (n = 22). The

black line is the line of perfect agreement.

5. Sensitivity Experiments

In this section, we explore the sensitivity of the 230Thd,p and 231Pad,p distributions simulated by the

circulation-geochemical model to the intensity of particle scavenging and to properties of the DWBC. Specif-

ically, numerical experiments are conducted with varying values of (i) the sensitivity of the adsorption rate

constant k1 to particle concentration (k′1), (ii) the volume transport of the Deep Western Boundary Current

at its inflow location, or (iii) the 230Thd,p and 231Pad,p activities of the DWBC at its inflow location. For each

experiment, the other model parameters and boundary conditions are the same as those for the reference

solution (section 4).
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a. Particle Scavenging Intensity

We consider two numerical experiments where the sensitivity of k1 to P is either halved or doubled

relatively to the values of k′1 assumed for Th and Pa in the reference solution (Table 3). Consider first the

effect of changing k′ for Th, k′ (Th), from its reference value of 0.04 yr−1 −
1 1 mg 1 m3 to either 0.02 or 0.08

yr−1 mg−1 m3. A larger value of k′1 means that a larger influence of PM concentration and hence of BNLs

on chemical scavenging is incorporated into the model. As expected, 230Thd is found to decrease and 230Thp

is found to increase as k′1(Th) is enhanced (top panels of Fig. 14).
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Fig. 14. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from

(pre-)GEOTRACES measurements (black circles) and as simulated for k′1(Th) = 0.02 yr−1 mg−1 m3 and

k′ (Pa) = 0.01 yr−1 mg−1 3
1 m (blue lines), k′1(Th) = 0.04 yr−1 mg−1 m3 and k′1(Pa) = 0.02 yr−1 mg−1 m3

(red, reference solution), and k′1(Th) = 0.08 yr−1 mg−1 m3 and k′1(Pa) = 0.04 yr−1 mg−1 m3 (green). The

circles show averages of measurements from several stations, with the exceptions listed in Figure 9 for

230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the averages

(measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the

three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp (Fig. 3) and
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231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged

profile of the measurements.

The agreement with 230Thd measured at (pre-)GEOTRACES stations, however, is only weakly modified

compared to the reference solution: the root mean square difference between the observed and simulated

230Th , rmsd(230Th ), amounts to 0.086 dpm m−3 for both k′ 1
d 0.08 −

d 1(Th) = 0.02 and yr−1 mg m3 (Table

4). The solution with k′1(Th) = 0.02 yr−1 better describes the observed 230Thp averages than the reference

solution, although the agreement with the observed 230Thd averages deteriorates (Fig. 14) and rmsd(230Thp)

is only slightly reduced compared to the reference solution (Table 4). The solution with k′ (Th) = 0.08 yr−11

mg−1 m3 strongly overestimates the observed 230Thp averages over most of the water column, except near

the surface and the bottom of the profile (Fig. 14), with rmsd(230Thp) reaching 0.037 dpm m−3 (Table 4).

Consider then the effect of altering k′1(Pa) from its reference value of 0.02 yr−1 mg−1 m3 to either 0.01 or

0.04 yr−1 mg−1 m3 (bottom panels of Fig. 14). Similarly to 230Thd,p, the station-averaged 231Pad (231Pap)

decrease (increase) as k′1(Pa) is enhanced. Interestingly, the 231Pad averages simulated by the model show

a small sensitivity to k′1(Pa) in the upper ∼ 3000 m, which suggests that particle scavenging is in general a

small term in the budget of 231Pad in this part of the water column. Compared to the reference solution,

the low 231Pad averages observed below 3000 m are better reproduced by the model if Pa adsorption onto

particles is assumed to be more sensitive to particle concentration, although rmsd(231Pad) is reduced only

slightly (Table 4). However, in this case, the model strongly overestimates the 231Pap averages observed over

the entire column (Fig. 14), which illustrates a difficulty to explain simultaneously the observed 231Pa in

dissolved and particulate forms. As shown above, a similar difficulty arises for 230Th, although the reference

solution appears to better reproduce the observed 230Thd,p averages than the observed 231Pad,p averages

(Fig. 14).

b. Strength of the DWBC Inflow

We now examine how the strength of the Deep Western Boundary Current at its inflow location (between

42.5–44.875◦N along 55◦W; Appendix C) affects the distributions of 230Th and 231Pa in both dissolved and

particulate forms in the western North Atlantic domain. Observations along the continental slope and rise in

the western North Atlantic suggest considerable temporal variations in the volume transport of the DWBC.

Four repeat hydrographic sections across the DWBC at 55◦W were occupied in order to investigate the inter-

annual variability of the deep flow (Pickart and Smethie 1998). The volume transport was estimated from

geostrophic velocities in four density layers corresponding to Upper Labrador Sea Water (ULSW), Classical

Labrador Sea Water (CLSW), Iceland-Scotland Overflow Water (ISOW), and Denmark Strait Overflow
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Water (DSOW). The 4-layer summed transport during occupations in 1991, 1994, and 1995 was estimated

to range from 12.6 to 25.2 Sv, with an average of 18.8±6.3 Sv. More recently, current meter observations

collected along line W from May 2004 to April 2008 showed that the 5-d averaged transport summed in the

ULSW, CLSW, ISOW, and DSOW layers ranged from 3.5 Sv to 79.9 Sv, with a record mean of 25.1 Sv and

standard deviation of 12.5 Sv (Toole et al. 2011). Bias adjustment to account for the finite width of the

mooring array increased the mean transport estimate to 28.7 Sv (Toole et al. 2011).

Here two numerical experiments are considered, where the volume transport of the DWBC inflow is

changed from its value of 20 Sv in the reference solution to either 10 Sv or 40 Sv. These experiments are not

intended to be realistic; their sole purpose is to document the sensitivity of the radionuclide distributions

to sizeable variations in the strength of the DWBC inflow in the model. It is seen that the station-averaged

profiles of 230Thd,p and 231Pad,p experience only modest changes if the DWBC inflow is strengthened from

10 to 40 Sv (Fig. 15).
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Fig. 15. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from

(pre-)GEOTRACES measurements (black circles) and as simulated when the strength of the DWBC at its

inflow location is set to 10 Sv (green lines), 20 Sv (red, reference solution), and 40 Sv (blue). The circles

show averages of measurements from several stations, with the exceptions listed in Figure 9 for 230Thd,p
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and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the averages (measurement

error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the three (four)

deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp (Fig. 3) and 231Pap

(Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged profile

of the measurements.

The differences between the simulated radionuclide activities and the measured radionuclide activities from

(pre-)GEOTRACES cruises are not greatly altered by changes in the DWBC inflow: as the DWBC inflow is

increased from 10 to 40 Sv, rmsd(230Th −
d) changes from 0.081 to 0.076 dpm m 3, rmsd(230Thp) from 0.030

to 0.029 dpm m−3, and rmsd(231Pa ) from 0.040 to 0.037 dpm m−3 231
d , whereas rmsd( Pap) amounts to the

same value of 0.002 dpm m−3 (Table 4).

Notice that the small variations of the station-averaged profiles with DWBC inflow do not imply that the

DWBC inflow has also a modest influence on local radionuclide profiles. A change in DWBC inflow from 10

to 40 Sv does produce appreciable changes at some locations, particularly in the vicinity of the inflow and

near the depth of the current core (not shown).

c. Radionuclide Activities in the DWBC Inflow

Finally, we explore the sensitivity of the 230Thd,p and 231Pad,p distributions to the radionuclide activities

which are assumed at the location of the DWBC inflow. Although 230Th and 231Pa measurements are not

available to constrain the variability of the two radionuclides near this location, hydrographic observations

indicate that water properties of the DWBC can exhibit significant inter-annual variations. In their analysis

of repeat sections along 55◦W, Pickart and Smethie (1998) reported that the largest property variability

between 1983–1995 occurred in the CLSW, which in the 1990s became markeldy colder, fresher, and richer

in dissolved oxygen and CFCs, all suggestive of ‘new ventilation’. Observations along line W from 1995 to

2014 revealed water mass changes that are consistent with changes in source water properties upstream in

the Labrador Sea (Le Bras et al. 2017). Particularly evident was the cold, dense, and deep class of Labrador

Sea Water (dLSW) that was presumably created by recurring convection events during severe winters in

1987–1994. From 2010 to 2014, the density of DSOW within the DWBC along line W was found to decrease

as a result of warming overcompensating a slight salinity increase (Andres et al. 2016).

Here we consider two numerical experiments where the 230Thd,p and 231Pad,p activities at the DWBC

inflow location are halved or doubled, compared to their respective values in the reference solution (Appendix

C). It is seen that the station-averaged 230Thd,p and 231Pad,p vary markedly at most depths in response to

variations in radionuclide activities at the DWBC inflow (Fig. 16).
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Fig. 16. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from

(pre-)GEOTRACES measurements (black circles) and as simulated when the radionuclide activities at the

DWBC inflow are halved (green lines) or doubled (blue) compared to their values in the reference solution

(red). The circles show averages of measurements from several stations, with the exceptions listed in

Figure 9 for 230Th 231
d,p and in Figure 10 for Pad,p. The horizontal bars show the standard errors of the

averages (measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements,

and the three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp

(Fig. 3) and 231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the

station-averaged profile of the measurements.

As a result, the agreement with observational averages is noticeably modified: as 230Thd,p and 231Pad,p at

the DWBC inflow are changed from half to twice their reference values, rmsd(230Thd) (rmsd(230Thp)) varies

from 0.078 and 0.165 dpm m−3 (0.025 to 0.041 dpm m−3), whereas rmsd(231Pa ) (rmsd(231d Pap)) varies

from 0.033 and 0.110 dpm m−3 (0.001 to 0.002 dpm m−3) (Table 4). Thus, in the model, the radionuclide

contents of the DWBC inflow more strongly influence the station-averaged profiles than the strength of the

DWBC inflow.
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6. Discussion

The results presented in section 4 show that the circulation-geochemical model considered in this study

can capture most (> 80%) of the variance in the measurements of 230Th and 231Pa in the dissolved phase

obtained from (pre-)GEOTRACES cruises in the western North Atlantic. Notably, the reversal in the 230Thd

and 231Pad gradients observed at mid-depth can be reproduced by the model, though too deeply by ∼ 1000

m on average for 231Pad. Results from sensitivity experiments (section 5) show that measurements of 230Th

and 231Pa in the particulate phase could also be broadly reproduced, although a model simulation could not

be found that closely replicates radionuclide measurements in the two phases simultaneously. Conceivably, a

combination of model parameters and (or) boundary conditions different than the ones that have been tested

could lead to a significantly better fit of model results with radionuclide measurements in the two phases.

Such a combination, however, is probably best sought by using an inverse procedure, which is beyond the

scope of this study.

Despite the difficulty experienced to closely replicate 230Th and 231Pa data in both the dissolved phase and

the particulate phase, the present model does seem to be appropriate for investigating important questions

about the observed distributions of 230Th and 231Pa in the western North Atlantic. Of particular significance

are the observed reversals in the vertical 230Thd and 231Pad gradients at mid-depth, leading to radionuclides

activities in deep waters that are markedly lower near the western margin than far from the margin (Fig. 1).

The model experiments illustrated in section 5 suggest that the elevated particle concentrations in benthic

nepheloid layers could enhance chemical scavenging and hence produce the low 230Thd and 231Pad activities

which have been measured in these waters (Fig. 14).

In the remainder of this section, we first examine in more detail the importance of particle scavenging

relatively to DWBC inflow in setting the radionuclide distributions in the western North Atlantic. Our

results are then compared to those obtained in previous model studies. The potential of BNLs as sites of

intensified scavenging and the possibility of significant temporal variations in chemical scavenging in the

deep western North Atlantic are subsequently discussed. Finally, we clarify the implications of our results

for the use of 230Th as a ventilation tracer (e.g., Moran et al. (1997); Vogler et al. (1998); Moran et al.

(2002)).

a. Importance of Particle Scavenging

We consider another experiment that further illustrates the potential role of spatial variations in particle

scavenging, and of BNLs in particular, in setting the distributions of 230Th and 231Pa in the western North

Atlantic. In this experiment, the apparent rate constants for Th and Pa adsorption are uniform and equal
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to the domain-averaged values of k1(Th) and k1(Pa) in the reference solution. This treatment ensures that

the differences in the radionuclide distributions between this experiment and the reference experiment are

due to different assumptions about spatial variations in k1 (uniform versus non-uniform), and not due to

different domain-averaged k1 values.

We find that, with uniform k 230 231
1(Th) and k1(Pa), Thd and Pad averages increase monotonically with

depth, in contrast to the reference solution (and the observations), which shows inversions in 230Thd and

231Pad profiles at mid-depth (Fig. 17).
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Fig. 17. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from

(pre-)GEOTRACES measurements (black circles) and as simulated for uniform k1(Th) and k1(Pa) when

the strength of the DWBC at its inflow location is set to 10 Sv (green lines), 20 Sv (red), and 40 Sv (blue).

The circles show averages of measurements from several stations, with the exceptions listed in Figure 9 for

230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the averages

(measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the

three (four) deepest measurements of 231Pa 231
d ( Pap); Table 1). The extreme values of 230Thp (Fig. 3) and

231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged

profile of the measurements.
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As a result, the low 230Thd and 231Pad activities observed in deep waters are not reproduced by the model.

The root mean square differences for 230Thd,p and 231Pad,p for uniform k1(Th) and k1(Pa) are comparable

or higher than those for variable k1(Th) and k1(Pa) (Table 4). Experiments with a DWBC inflow of 10, 20,

or 40 Sv all show a monotonic increase of 230Thd and 231Pad with depth if k1(Th) and k1(Pa) are uniform

(Fig. 17). Overall, these results suggest that the low 230Thd and 231Pad activities observed near the western

margin are more likely due to enhanced scavenging in the deep water column than to ventilation by 230Thd-

and 231Pad-poor waters from the western boundary.

The small sensitivity to changes in DWBC inflow (section 5b) may be a consequence of our choice of

lateral boundary conditions. To test this possibility, we consider an experiment where two modifications to

the reference experiment are brought simultaneously: (i) the DWBC inflow is increased from 20 Sv to 40

Sv and (ii) the radionuclide activities at the DWBC inflow location are halved compared to the reference

values. The resulting values of the rmsd between observed and simulated activities are listed in Table 4. It

is seen that these values are generally larger than those for the reference experiment and for the experiment

where the activities at the DWBC inflow are halved but the strength of the DWBC inflow is kept equal to 20

Sv. Compared to these two experiments, strengthening the DWBC inflow and lowering the activities at the

DWBC inflow noticeably lowers the average 230Thd,p and 231Pad,p in the upper water column above ∼ 3500

m (Fig. 18). However, the dissolved and particulate activities below ∼ 3500 m remain largely unaltered in

the experiment where (i) and (ii) are both implemented, suggesting that the small sensitivity of radionuclide

activities in deep waters to changes in DWBC inflow is a robust result of the model.
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Fig. 18. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from

(pre-)GEOTRACES measurements (black circles) and as simulated for the reference experiment (red),

when the radionuclide activities at the DWBC inflow locations are halved (green), and when the

radionuclide activities at the DWBC inflow locations are halved, and the DWBC at its inflow is 40 Sv

(blue). The circles show averages of measurements from several stations, with the exceptions listed in

Figure 9 for 230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the

averages (measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements,

and the three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp

(Fig. 3) and 231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the

station-averaged profile of the measurements.

b. Comparison to Previous Model Studies

In this section, we briefly put our results in the context of three recent model studies on the distribution

231Pa and 230Th in the global ocean (Rempfer et al. 2017; Gu and Liu 2017; van Hulten et al. 2018).

Some of the key differences between these previous models and the one considered in this study are worth

mentioning. In these previous models, particle scavenging is determined from the distribution of different
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particle types simulated by the models, in contrast to our model which includes a single particle field directly

based on observations. Moreover, the models of Gu and Liu (2017) and van Hulten et al. (2018) simulate

total activities, not dissolved and particulate activities separately. This approach has the benefits that the

radionuclide distributions can be calculated by solving a single equation and that sorption reactions need

not be treated explictly, although it does require assumptions about solid-solution partitioning. Perhaps

more important, none of these previous models represent the large particle concentrations that characterize

benthic (and intermediate) nepheloid layers.

Interestingly, the difficulty to produce simulations that agree simultaneously with 230Th and 231Pa mea-

surements in dissolved and particulate forms is a common result of all three models (Rempfer et al. 2017;

Gu and Liu 2017; van Hulten et al. 2018). Rempfer et al. (2017) acknowledged the difficulty to produce a

simulation that simultaneously accords with 230Th and 231Pa data in the two phases, and found that a better

agreement is obtained by representing in their model additional sinks at the sea floor (‘bottom scavenging’)

and at continental boundaries (‘boundary scavenging’). van Hulten et al. (2018) reported that the 230Thd

and 231Pad distributions simulated by their model compare ‘well’ with GEOTRACES data in many parts

of the ocean, but that 230Th 231
p and Pap activities are underpredicted because of missing particles from

nepheloid layers. Finally, Gu and Liu (2017) stated that their model can simulate 230Thd and 231Pad dis-

tributions that are in ‘good agreement’ with observations but that 230Thp and 231Pap are generally smaller

than observed in the deep ocean (and generally larger than observed in the surface ocean).

The difficulty to reproduce in the same simulation the observed radionuclide distributions in the two

phases is also encountered in this work, although it is perhaps less severe owing to the consideration of BNLs

and of the associated enhancement in particle scavenging in deep water. Rempfer et al. (2017) included

simplified representations of ‘bottom scavenging’ and ‘boundary scavenging’ in their computationally efficient

model with coarse horizontal resolution (36×36 grid cells). ‘Bottom scavenging’ was represented by applying

a globally uniform concentration of resuspended particles to grid cells adjacent to the bottom, and ‘boundary

scavenging’ was represented by increasing by a uniform factor the adsorption rate constant for 231Pa in grid

cells adjacent to continents. The simulation representing both forms of scavenging and illustrated in their

paper (Rempfer et al. (2017); their Fig. 2) shows that the deep water 230Th 231
d and Pad activities are reduced

compared to a simulation where ’bottom scavenging’ and ‘boundary scavenging’ are absent. However, in this

simulation, both 230Thd and 231Pad appear to increase monotonically with depth, i.e., they did not seem

to present the 230Thd and 231Pad inversions at mid-depth as shown in observations and in our model. The

apparent lack of 230Thd and 231Pad inversions in the simulation illustrated by Rempfer et al. (2017) could

be due to the fact that ‘bottom scavenging’ was represented only in the deepest grid cells of their model,

whereas we allow for enhanced k1 over the entire thickness of BNLs as estimated from the optically-derived
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particle field.

c. BNLs as Sites of Intensified Scavenging

Whereas boundary scavenging is expected to affect all particle-reactive species with long residence times,

the processes leading to enhanced deposition of these species in marginal sediments are not completely

understood. One process, however, could operate at many margins: the intensified scavenging in particle-

rich nepheloid layers (benthic and intermediate) that may be found near continental slopes (for reviews

see McCave (1986); Gardner et al. (2018a)). Benthic nepheloid layers near the western North American

margin are characterized by particle concentrations that are much higher than, and particle compositions

that are distinct from, those in surrounding waters (e.g., Lam et al. (2015); Gardner et al. (2017)). Particles

sampled from BNLs near the western margin along GA03 presented concentration levels of up to 1648 mg

m−3 and were dominated by lithogenic material (Lam et al. 2015). If the adsorption rates of particle-reactive

metals increase with particle abundance, as postulated on theoretical grounds (e.g., Honeyman et al. (1988))

and supported by observational evidence (e.g., Honeyman et al. (1988); Lerner et al. (2017)), then these

layers would be characterized by relatively large removal rates of Th and Pa from solution. Less obvious,

however, is the effect of the chemical composition of resuspended sediment on Th and Pa scavenging in the

water column. Lithogenic material was not found to strongly contribute to k1 variance at GA03 stations

east of Bermuda (Lerner et al. 2017), although this analysis focused on data collected outside BNLs. More

generally, particles resuspended from the seabed would lead to scavenging rates that are different from those

in surrounding waters if their chemical composition differs from that of the primary settling material from

surface waters. Various factors could produce such differences: (i) temporal variations in the composition of

the primary flux, (ii) diagenetic changes in the sediment (later resuspended), (iii) differential resuspension of

particles by type and size, and (iv) different original sources for the resuspended material and the primary

material (Gardner et al. 1985b).

Among the water samples from GA03 considered in this study, those collected near the bottom at stations

GT11-04 and GT11-08 present particularly large anomalies in radionuclide activities. Measurements on

near-bottom samples at these stations display relatively low values of dissolved 230Th and 231Pa (Figs. A2

and A5) and exceptionally high values of particulate 230Th and 231Pa (Figs. A3 and A6). Inspection of

profiles of transmissometer data (voltage or particle beam attenuation coefficient) at GT11-04 and GT11-08

published in previous studies shows that these samples were collected in benthic nepheloid layers (e.g., Fig.

13 of Lam et al. (2015); Fig. 3 of Hayes et al. (2015a)). Here profiles of PM concentration at stations

GT11-04 and GT11-08 are derived from measurements of the beam attenuation coefficient (BAC) obtained
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from transmissometry (WETLabs C-star 25-cm pathlength transmissometer with serial number CST-491DR;

transmissometer data from Schlitzer et al. (2018)), using the empirical relationship between PM and BAC

due to particles as reported by Gardner et al. (2018b). It is seen that both stations feature a well-defined

BNL in the lower part of the water column (Fig. 19).
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Fig. 19. Vertical profiles of optically derived particulate matter concentration at stations GT11-04,

GT11-06, and GT11-08 between the New England continental shelf and Bermuda. Particulate matter

concentration is estimated from beam attenuation coefficient measurements available in the GEOTRACES

Intermediate Data Product (Schlitzer et al. 2018) using the empirical relationship between PM

concentration and BAC due to particles as reported by Gardner et al. (2018b).

The concentration maxima amount to about 2100 and 450 mg m−3 near the bottom at GT11-04 and GT11-

08, respectively, and exceed those in the surface waters at each station. The upper boundary of the BNL

occurs at a water depth of about 3500 m at GT11-04 and about 4500 m at GT11-08, showing that samples

presenting relatively low 230Th and 231Pa activities and exceptionally high 230Th and 231
d d p Pap activities

at these stations (Figs. A3 and A6) originated from a strong BNL. Deep water samples collected at other

stations along the western segment of GA03 and showing large radionuclide anomalies also originated from

a BNL. At station GT11-06, for example, 230Thd and 231Pad activities show minima below 4000 m (Figs.

A2 and A5), where a BNL is also found (Fig. 19).

The foregoing observations lead to the hypothesis that intensified scavenging of 230Th and 231Pa may
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occur in BNLs. The hypothesis is further suggested by a comparison of the horizontal distributions of PM

concentration, 230Thd, and 231Pad in our reference solution. Particle concentrations show maxima in three

main regions (Fig. 20): (i) along most of the continental slope and rise, (ii) the Sohm Abyssal Plain (Fig.

3), and (iii) the region between the New England Seamounts and Bermuda (Fig. 3).
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Fig. 20. Distributions of particulate matter concentration as estimated from optical measurements

compiled by Gardner et al. (2017) (top three panels), 230Thd activity as simulated in the reference solution

(middle panels), and 231Pad activity as simulated in the reference solution (bottom panels). The left,

middle, and right panels show distributions at a depth of, respectively, 3000 m, 4000 m, and 5000 m.

The simulated distributions of 230Thd and 231Pad show minima in each of these regions (Fig. 20), suggesting

that the pattern of particle scavenging at least partly influences the distribution of both radionuclides. Notice

that regions of PM maxima and regions of (230Thd,
231Pad) minima do not strictly coincide. For example,

230Th and 231Pa could be removed from solution in a region where PM levels are high and the resulting

(230Thd,
231Pad) anomalies could be advected into a region where PM levels are lower, leading to 230Thd and

231Pad minima there.
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Evidence for an influence of BNLs on the cycling of particle-reactive elements in the deep water column

has been reported in a number of studies, namely through the observed disequilibrium of 234Th (half-life of

24.1 days) with its radioactive parent, 238U (e.g., Bacon and Rutgers van der Loeff (1989); Turnewitsch and

Springer (2001); Rutgers van der Loeff et al. (2002)). Using a model that describes the vertical distribution

of 234Th near the seabed, Rutgers van der Loeff and Boudreau (1997) showed that the depletion of 234Th

in bottom waters can be linked to the distribution of excess 234Th in surface sediments and on resuspended

particles. Recently, BNLs have been mapped using 6,392 full-depth profiles made during 64 cruises using

transmissometers mounted on CTD in several programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat

Hydrography, and GO-SHIP over the last four decades (Gardner et al. 2018a). In addition to the western

North Atlantic, areas of intense BNLs have been found in the Argentine Basin, the Southern Ocean, and the

oceanic region around South Africa (see also Gardner et al. (2018b)). Future studies will need to establish the

global significance of BNLs for the ocean biogeochemical cycles of 230Th and 231Pa and of adsorption-prone

elements in general.

d. Temporal Variations of Particle Scavenging in the Deep Sea

The possibility that 230Th and 231Pa removal from solution can be enhanced in BNLs suggests that the

scavenging of both nuclides may show significant temporal variations in the deep water column. Benthic

nepheloid layers generally have a basal uniform region corresponding closely to the bottom mixed layer

(typically 20–100 m thick) and an overlying region (typically 500–2000 m thick) where light scattering

(or attenuation) falls off more or less logarithmically up to a clear water minimum (McCave 1986). The

particulate material in each region is thought to originate from sediment resuspension followed by some

combination of vertical turbulent mixing and lateral transport (McCave 1986). None of these processes are

expected to be time-invariant, suggesting that the amount and distribution of particles within BNLs may

both be variable.

Dramatic evidence for the transient nature of BNLs in the western North Atlantic has been provided

by a number of studies, most notably through the HEBBLE experiment on the Nova Scotian continental

rise (HEBBLE 1988). Previous studies had established that intense BNLs in the western North Atlantic

tend to form during episodes of strong abyssal currents and sediment resuspension, which have been picto-

rially referred to as ‘benthic storms’ (Gardner and Sullivan 1981). Results from HEBBLE showed that fast

currents, high concentrations of suspended sediment, and grooved mud beds are associated with erosion in

frequent benthic storms (Hollister and McCave 1984). More recently, measurements of deep-sea currents,

nephelometer-based particle concentration, and seafloor photographs gathered during science programs that
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spanned two decades in the western North Atlantic have been synthesized (Gardner et al. 2017). These au-

thors concluded that benthic storms occurred in areas with high surface eddy kinetic energy, most frequently

beneath the meandering Gulf Stream and its associated rings.

Different mechanisms have been proposed to explain benthic storms, including (i) synoptic atmospheric

events such as nor’easters, tropical storms, or hurricanes (Gardner and Sullivan 1981); and (ii) oceanic

features generated from the Gulf Stream such as deep cyclones and topographic Rossby waves (Gardner

et al. 2017). In this regard, it is instructive to consult the cruise report for the second leg of GA03 for

information about weather conditions encountered during the leg (GA03 Shipboard Team 2016). After

station GT11-04, where a very strong BNL was found (Fig. 19), weather conditions deteriorated, with

a hurricane passing between the ship’s position and Bermuda, followed by three more days of sustained

winds > 25 knots. At station GT11-06, a very strong BNL was observed, detectable below 4200 m but

most strongly expressed below 4400 m (GA03 Shipboard Team (2016); Fig. 19). The BNL at GT11-08

was even stronger (Fig. 19). Speculatively, the difficulty to simulate accurately radionuclide profiles at

individual stations whilst the station-averaged profiles can be better reproduced (section 4.b) may be due

to pronounced temporal variations in PM load and scavenging intensity at abyssal depths. Further work is

needed to assess whether the strong BNLs observed at stations occupied along the western segment of GA03

and showing large radionuclide anomalies near the bottom were related to the adverse weather conditions

experienced during the cruise.

e. Use of 230Th as a Ventilation Tracer

A few studies suggested that the low 230Th and 231Pa observed in the deep Atlantic compared to values

expected from reversible exchange could be explained by deep ventilation through lateral advection and

mixing (Moran et al. 1997; Vogler et al. 1998; Moran et al. 2002). These studies applied a model originally

developed to interpret 230Th data from the Weddell Sea in terms of upwelling of lower Circumpolar Deep

Water (Rutgers van der Loeff and Berger 1993). In this ‘mixing-scavenging’ model, the equations for re-

versible exchange are extended to include a term that is intended to represent the additional influence of a

source water,

∂Ap A∗ −Atot
wp = λAπ + , (6)

∂z τ

where Atot = Ad +Ap is the total activity, A∗ is the total activity of the source water, and τ is a time scale

for water renewal. An analytical solution of (6) can be easily derived for uniform wp, A∗, and τ , and fit to

activity data to obtain an estimate of τ . From this approach, water renewal times from 3 to 140 yr have

been reported, where the range reflects (i) estimates from different locations in the Atlantic Ocean and (ii)
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uncertainties associated with the variability of activity data from a single station (Moran et al. 1997; Vogler

et al. 1998; Moran et al. 2002).

Albeit instructive, the model (6) is not free of limitations. The effect of advection is represented in a

crude manner and solutions obtained with uniform A∗ and τ assume that Atot is influenced by the same

source water introduced at the same rate throughout the water column. More recently, an attempt to extract

information about deep North Atlantic circulation from 230Th data has been undertaken using an inverse

finite-difference geostrophic model (Marchal et al. 2007). These authors found that the addition of 230Th

data to density and transport observations in the inversion leads to zonally integrated meridional transports

below 1000 m which have larger amplitudes (by 2–9 Sv), where the range reflects the uncertainties in the

large-scale 230Th distribution and in the 230Th balance equation.

The results reported in this paper, however, suggest that caution should be exercised when interpreting

230Th and 231Pa measurements from the western North Atlantic in terms of deep water ventilation, at least

in terms of ventilation from the DWBC. According to these results, the distributions of 230Th and 231Pa in

the western North Atlantic show on average only modest variations in response to a change by a factor of four

in the strength of the DWBC (10 to 40 Sv) along 55◦W (Fig. 15). Other factors, such as particle scavenging

and the 230Th and 231Pa activities in the inflowing waters, are shown here to have a larger influence on the

radionuclide distributions west of the MAR. This latter finding is consistent with a recent study by Deng

et al. (2018), who found, using the ‘mixing-scavenging model’, that the 230Th and 231Pa activities of the

water entering a deep basin significantly influence the 230Th and 231Pa activities within the basin.

It is instructive to compare, for the reference solution, the residence time of the water in the domain

with respect to the DWBC inflow with the residence of both radionuclides with respect to scavenging. The

water residence time is computed from ∫∫∫
dx dy dz

τwat = ∫∫ , (7)
un(xDWBC, y, z)dy dz

where un(xDWBC, y, z) is the zonal (westward) velocity at the DWBC inflow location. The triple integral in

the numerator is over the entire volume of the domain and the double integral in the denumenator is over

the surface area of the DWBC inflow.

We find a value τwat = 21.0 yr, of the same order of magnitude as the water renewal times estimated

from tritium and excess He-3 data (Doney and Jenkins 1994) and from CFC data (Rhein et al. 2015). On

the other hand, we consider three different definitions of residence time for scavenging. First, we calculate

the scavenging residence time as

∫∫∫
Atot(x, y, z) dx dy dz

τscav,1 = ∫∫ , (8)
λAπ dx dy dz
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where A is the total activity defined above. We find that τ = 19 yr for 230
tot scav,1 Th and 91 yr for

231Pa, consistent with the estimates for the whole Atlantic Ocean of, respectively, 26 yr and 111 yr, based

on the same definition and reported by Yu et al. (1996). Although the above definition of residence time is

convenient, it does rely on the assumption that the radionuclide balance in the water column is dominated

by radioactive production and particle scavenging (Broecker and Peng 1982). We thus consider another

definition,

∫∫∫
Atot(x, y, z) dx dy dz

τscav,2 = ∫∫ , (9)
wpAp,bot dx dy

where Ap,bot is the activity of the radionuclide in the particulate phase just above the seafloor. The time scale

as defined above could be regarded as a residence time with respect to the flux of particulate radionuclide to

the seabed. We find that τscav,2 amounts to 8 yr for 230Th and 32 yr for 231Pa, consistent with the notion

that Th is more sensitive to particles than Pa but noticeably smaller than the values of τscav,1. Finally, we

consider a third definition,

∫∫∫
Ad(x, y, z) dx dy dz

τscav,3 = ∫∫∫ , (10)
k1(x, y, z)Ad(x, y, z) dx dy dz

where Ad is the radionuclide activity in the dissolved phase and k1 is the adsorption rate constant as defined

in section 2.3. This other time scale could be viewed as a residence time with respect to adsorption. Unlike

τscav,1 but similarly to τscav,2, it has the virtue that a specific removal process is identified in its definition.

We find that τscav,3 amounts to 2 yr for 230Th and 4 yr for 231Pa, again consistent with the greater particle

sensitivity of Th but even smaller than the values of τscav,1.

A comparison of the values of τwat with those of (τscav,2,τscav,3) shows that 230Th is in general more

rapidly removed by adsorption onto particles and by particle settling to the seafloor than it is transported

by the DWBC. On the other hand, τ 231
wat is smaller than τscav,2 for Pa, suggesting that the transport of

231Pa is at least as important as its removal to sediments.

7. Summary and Perspectives

In this study, we have first examined the extent to which a regional ocean circulation model with 1/4◦

resolution and including a description of particle scavenging based on optically-derived particle concentration

data can reproduce the circulation and the distributions of 230Th and 231Pa in the western North Atlantic.

We found that some, though not all, elements of the general circulation and of the radionuclide distributions

which are observed in the area can be reproduced. The model simulates a Gulf Stream displaying some
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degree of variability (e.g., meandering), a Deep Western Boundary Current along the continental slope

and rise, and key features in the 230Thd,p and 231Pad,p distributions observed during (pre-)GEOTRACES

cruises, such as a reversal of the vertical 230Thd and 231Pad gradients at mid-depth. On the other hand,

the simulations presented in this paper differ in several respects from observations, e.g., the Gulf Stream

separates from the western margin farther north than observed, the velocity maxima in the Gulf Stream

(DWBC) are underestimated (overestimated) and occur too far to the northwest along line W, and the low

231Pad activities observed in deep water are overpredicted.

The model has then been applied to investigate the influences of particle scavenging and of DWBC

inflow properties (strength and radionuclide contents) on the 230Th and 231Pa distributions in the western

North Atlantic. We found that the vertical distributions of 230Thd,p and 231Pad,p averaged for all (pre-

)GEOTRACES stations are more sensitive to particle scavenging than they are to the strength of the

DWBC inflow. This result suggests that the distribution of particulate matter concentration, with (relative)

maxima in benthic nepheloid layers, is more important than the strength of deep water ventilation in setting

the basin-mean vertical distributions of both radionuclides in the study area. We also found that changes in

the radionuclide activities of the DWBC inflow are more likely to produce variations in these distributions

than changes in the strength of the DWBC inflow. A model solution with uniform rate constants of Th and

Pa adsorption, with no enhancement in deep water, was unable to explain the observed inversion in 230Thd

and 231Pad profiles at mid-depth. Overall, these results suggest that the relatively low 230Thd and 231Pad

activities observed in deep waters in the western North Atlantic stem from intensified scavenging in thick,

active benthic nepheloid layers rather than from ventilation by 230Thd- and 231Pad-poor waters from the

western boundary.

We clarify below what we perceive as being the main limitations of this study. Needless to say, the

results reported in this paper are only as reliable as the model on which they are based. A number of

factors could be responsible for the differences between model results and physical observations from satellite

altimetry and repeat cruises along line W. These include, for instance, an inadequate horizontal resolution

of the model, the surface forcing based on climatological fields of winds, temperature, and salinity, and the

omission of shelf circulation. The factors responsible for the differences between the observed and modeled

distributions of 230Thd,p and 231Pad,p could be due to errors in both the physical and geochemical components

of the model. Although the present model represents explicitly the kinetics of sorption reactions through

a separate equation for the dissolved and particulate phases, the treatment of 230Th and 231Pa cycling in

the ocean remains relatively crude. While optical measurements provide important constraints on particle

distribution, temporal variations in particle concentration, which can be dramatic near the bottom (e.g.,

HEBBLE (1988)), are neglected in this study. While several light scattering time series from long-term
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nephelometer deployments indicate a strong positive correlation between the temporal standard deviation

in near-bottom particle concentration and the eddy kinetic energy as derived from satellite altimetry, the

temporal variability of particle concentration in the northwest Atlantic remains largely unknown.

Given the above caveats, a number of perspectives for future modeling efforts can be outlined. First, a

model with higher resolution would be desirable in order to simulate the western North Atlantic circulation

in more detail. With a horizontal resolution of 1/4◦, baroclinic eddies are allowed to grow but are only

marginally resolved; to simulate the full dynamical and life cycle of baroclinic eddies, an ‘eddy-resolving’

model, perhaps with a horizontal resolution approaching 1/10◦, would be needed (Tréguier et al. 2014). Use

of higher spatial resolution might also help (i) to better represent the separation of the Gulf Stream from

the coast (Chassignet and Marshall 2008; Ezer 2016b) and (ii) to reduce the error in the evaluation of the

horizontal pressure gradient (PG) in s-coordinate models. The error in the evaluation of the horizontal PG

in s-coordinate models has been discussed at length in the literature (e.g., Shchepetkin and McWilliams

(2003) and references therein; Ciappa (2008)). In POM, the initial density field area-averaged on z-levels

and then transferred to s-coordinates is subtracted from the density field at each time step in an effort to

reduce the truncation error associated with the calculation of the horizontal baroclinic PG (Mellor 2002).

Theoretical analysis and numerical solutions obtained with POM have shown that velocity errors arising

from the calculation of the horizontal PG vanish due to advection of the density field (Mellor et al. 1994),

or do not vanish prognostically but are small, especially if a horizontally averaged density field is subtracted

before computing the horizontal baroclinic PG (Mellor et al. 1998) as done in POM. Although these results

appear encouraging, subtraction of a horizontally averaged density field may not yield particularly good

results in a domain characterized by strong horizontal density gradients, such as the western North Atlantic,

and represented with a coarse grid. Second, the model domain should be extended to include the continental

shelf from Cape Hatteras to Nova Scotia. Consideration of the continental shelf would allow one to study the

potential role of shelf-ocean exchange in the radionuclide distributions in the slope region where some of the

230Th and 231Pa data used in this study originate. Finally, a more detailed description of particle scavenging

would permit more credible simulations of 230Th and 231Pa in the study area. The model could incorporate

an explicit representation of sediment resuspension, transport, and deposition, and of the influence of the

resuspended sediment on the removal of both radionuclides from the deep water column (e.g., Rutgers van der

Loeff and Boudreau (1997)). The model could be extended to include (i) the effect of particle composition

on the removal of both radioisotopes (e.g., Hayes et al. (2015a)), and (ii) more than one particle class so as

to account for the processes of particle (dis)aggregation, particularly in BNLs (e.g., McCave (1985); Hill and

Nowell (1990)).
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APPENDIX A: Mapping of Particle Matter Concentration

This appendix describes the procedure used to map the distribution of particulate matter (PM) concen-

tration from optical data in the western North Atlantic. For convenience, the particle concentration derived

from optical data and vertically interpolated on a model level is called cd below. The distributions of cd

along the different s-surfaces of the model (31 surfaces) are mapped individually. The mean of cd for a given

s-surface (c̄d below) is computed and subtracted from the cd values along the surface to yield PM anomalies,

c′d. The PM concentrations at the model grid points along the surface are then estimated from (i) the PM

anomalies at the locations where optical data are available (‘data locations’ below) and (ii) the mean c̄d,

ĉ = Ac′d + Ic̄d. (A1)

Here ĉ is a vector including the PM estimates at the model grid points (c would include the true PM values

at these points), c′d is a vector including the PM anomalies at the data locations, and I is the identity matrix

with order equal to the dimension of ĉ. The matrix A is derived such that the PM estimates at the model

grid points have minimum variance (e.g., Wunsch (2006)),

−1
A = Rccd (Rcdcd + Ree) , (A2)

where Rccd and Rcdcd are second-moment matrices for the PM field and Ree is a second-moment matrix for

the errors in the elements of c′d.

Consider first Rccd and R T
cdcd . These matrices are specifically defined as Rccd = E[ccd ] and Rcdcd =

E[c T
dcd ], where E[·] designates the expected value (mean) and T designates the transpose. The (i, j) element

of Rccd , noted [Rccd ]i,j , is the covariance between the PM concentrations at model grid point location r̂i and

data location rj . Similarly, the (i, j) element of Rcdcd , noted [Rcdcd ]i,j , is the covariance between the PM

concentrations at data locations ri and rj . The following assumptions are made about the spatial covariances

of PM concentration, ( ) ( )
|2 r̂i − rj | |ri − rj |

[Rccd ] = σ exp − and 2 −i,j [Rc c ] = σ exp , (A3)
L d d i,j L

where σ2 is a PM variance, L is a length scale, and | · | denotes the geodesic distance (taking the geodesic

distance instead of the actual distance along the s-surface should incur only a small error given the smallness

of bathymetric slopes). Equations (A3) entail that the covariance between the PM concentrations at two

different locations decreases exponentionally with distance between these locations, dropping to 0.37σ2 for

a distance equal to L.

Consider then Ree = E[eeT ], where e is the vector of errors in the elements of c′d. The diagonal elements

of Ree are the variances of the errors in the PM anomalies in c′d, and the off-diagonal elements of Ree are
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the covariances between these errors. Here Ree is taken as diagonal (no error covariances) and its diagonal

elements are set equal to σ2 = (8.5 mg m−3 2
e ) . This error variance is intended to account for the fact

that, for many of the stations where transmissometry measurements were made, samples for PM were not

collected, so the particle concentration in the water where the beam attenuation coefficient was minimum

could not be identified. In fact, the minimum beam attenuation coefficient for particles for each cast was

set to the cruise-average minimum taken as 0 m −1 (Gardner et al. 2018b), which results in PM value of 0

mg m−3 using the calibration equation. Thus, there is an error associated with the unknown concentration

of particles at the clear water minima. Since these minima typically exhibit particle concentrations between

5–12 mg m−3 in the western North Atlantic (Brewer et al. 1976; Gardner et al. 1985a), we use the median

value of 8.5 mg m−3 as the uncertainty associated with the particle concentration in clear waters.

The mapping as described above implies that the mapped PM field becomes smoother as the length scale

L increases, and that mapped PM values at grid points that are very distant (� L) from data locations

approach the mean value c̄d. In this study, we choose L = 100 km for all s-surfaces and σ2 = σ2
s , where

σ2
s is the variance of the PM field along the s-surface. With this choice, the mapped PM values at the

data locations are generally consistent with the PM estimates at these locations, i.e., more than 0.4% of the

mapped PM values are within 2σe of the PM estimates at the data locations (not shown).

APPENDIX B: Horizontal Boundary Conditions

This appendix describes the conditions imposed at the surface and at the bottom of the domain. Kine-

matic conditions are specified on the flow at the surface and at the bottom,

∂η
w = + uh · ∇η at z = η(x, y, t), (B1a)

∂t

w = −uh · ∇h at z = −h(x, y), (B1b)

where uh = (u, v) is the horizontal velocity, η(x, y, t) is the free surface elevation, and h(x, y) is the water

depth. Annual mean wind stresses from SCOW (Risien and Chelton 2008), τSCOW, are prescribed at the

surface and a shear stress τb is imposed at the bottom:

∂uh
ρoκm = τSCOW at z = η(x, y, t), (B2a)

∂z
∂uh

ρoκm = τb at z = −h(x, y). (B2b)
∂z

Here ρ = 1025 kg m−3o is a reference density and κm is the (variable) vertical turbulent viscosity. The

bottom stress is given by

τb = ρoCd|uh,b|uh,b. (B3)
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In this expression, uh,b is the horizontal velocity at the bottom (the grid point nearest to the bottom) and

Cd is a drag coefficient computed from ( )2
κ

Cd = , (B4)
ln [(1 + sb)h/zr]

where κ = 0.4 is the von Kármán constant, zr = 0.01 m is a bottom roughness parameter, and sb is the s

coordinate of the deepest level above the bottom (Mellor 2002). The Cd values over the whole domain are

tested such that 0.0025 ≤ Cd ≤ 1.

The turbulence variables at the surface and at the bottom are set as follows (Blumberg and Mellor 1987;

Mellor 2002), ( ) ( )
q2, q2

2/3
l = b1 u2∗, 0 , (B5)

where b1 = 16.6 is an empirical constant and u∗ is the friction velocity associated with the surface stress or

the bottom stress as denoted.

Finally, fluxes of temperature and salinity at the surface are represented through a restoring to climato-

logic annual mean values from the World Ocean Atlas (Locarnini et al. 2013; Zweng et al. 2013), respectively,

TWOA and SWOA,

∂T δ
κT = (T

∂z τ
WOA − T ) , (B6a)

∂S δ
κT = (S

∂z τ
WOA − S) . (B6b)

Here δ is the thickness of the surface layer and τ = 14.4 days is a restoring time scale. A no-flux condition

is specified for (Ad, Ap) at the surface and for (T, S,Ad, Ap) at the bottom.

APPENDIX C: Lateral Boundary conditions

Conditions on Velocities

The appendix describes the conditions applied at the lateral boundaries of the model domain. Conditions

on both the horizontal velocities (internal mode) and their vertical averages (external mode) are needed. For

convenience, the velocity component normal (tangent) to a lateral boundary is designated with subscript

n (t), and the velocity averaged from the bottom to the surface is represented with an overbar. Thus, for

example, un is the velocity normal to the boundary at a given depth and ūn is the vertically averaged velocity

normal to the boundary. Different types of conditions are imposed along different segments of the lateral

boundaries.

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

64



Segments with Inflows and Outflows

Deep Western Boundary Current The inflow of the DWBC is specified at the eastern boundary (55◦W)

along the segment between 42.5◦–44.875◦N. Conditions on both the distribution and the vertical average of

(un, ut) across the segment are specified. The distribution of (un, ut) across the segment is set as follows,( [ ] ) (
2 [ ] )2

y − y
un = ui,DWBC exp − i,DWBC z − z

exp − i,DWBC
. (C1a)

ly,DWBC lz,DWBC

ut = 0. (C1b)

Here yi,DWBC (zi,DWBC) is the meridional (vertical) coordinate of the core of the current and ly,DWBC (lz,DWBC)

is a length scale for the meridional (vertical) extent of the current. We assume a value of yi,DWBC such

that the core of the current is situated 120 km south of the northern boundary at 55◦W, a value of 3500

m for zi,DWBC, a value of 50 km for ly,DWBC, and a value of 500 m for lz,DWBC. The zonal velocity ui,DWBC

is calculated such that the integral of un over the surface area of the segment is equivalent to a volume

transport of 20 Sv (1 Sv = 106 m3 s−1). The above values assumed for (yi,DWBC, zi,DWBC, ly,DWBC, lz,DWBC) and

for the volume transport are broadly consistent with observations made in the area (Pickart and Smethie

1998). The vertical average of un is prescribed through a radiation condition (Flather 1976), whereas the

vertical average of ut is set to zero, √
g

ūn = ūn,∗ + (η − η∗) and ūt = 0. (C2)
h

Here ūn,∗ is the vertical average of the right-hand side of (C1a), h is the local water depth, η is the local

free surface elevation simulated by the model, and η∗ is a value calculated geostrophically from ūn,∗.

The outflow of the DWBC is specified at the southern boundary (28◦N) along the segment between

75.5◦–76.5◦W. The condition (C1a) for the normal velocity is replaced by a radiation condition, and the

velocity tangent to the boundary is set to zero:

∂un ∂un− ci = 0 and ut = 0. (C3)
∂t ∂n

Here n is the coordinate normal to the boundary and ci > 0 is a speed for the internal mode, derived from

the water depth at the boundary and a maximum depth, hmax (Mellor 2002). The differential equation

(C3) is discretized with an upstream scheme, which implies that meridional momentum is always advected

southwards (out of the domain) at the boundary. The vertical averages of (un, ut) are specified as follows.

The distribution of un along the segment is first taken as( [ ] )2
z − z

un = uo,DWBC exp − o,DWBC
. (C4)

lz,DWBC
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where zo,DWBC = 3000 m is the depth of the core of the current and lz,DWBC = 500 m. The meridional velocity

uo,DWBC is determined such that the integral of un over the surface area of the segment is equivalent to a

volume transport of 20 Sv, which is the volume transport set at the inflow location. The vertical averages

of (un, ut) are then prescribed similarly to (C2),√
g

ūn = ūn,∗ − (η − η∗) and ūt = 0, (C5)
h

where ūn,∗ is the vertical average of the right-hand side of (C4) and η∗ is determined geostrophically from

ūn,∗.

Gulf Stream The inflow of the Gulf Stream (GS), intended to represent the Florida Current, is applied

at the southern boundary along the segment between 78◦–80◦W. In contrast to the DWBC inflow, only

the vertical averages of (un, ut) are specified. Conditions identical to (C3) are prescribed for (un, ut). The

vertical averages of (un, ut) are prescribed as follows. The distribution of un along the segment is first taken

as ( [ ] )2
z

un = ui,GS exp − . (C6)
lz,GS

where lz,GS = 200 m. The meridional velocity ui,GS is calculated such that the integral of un over the surface

area of the segment is equivalent to a volume transport of 30 Sv. This value is consistent with the long-term

mean transport of the Florida Current of about 32 Sv measured from daily cable observations and shipboard

sections across the Straits of Florida (Baringer and Larsen 2001; Meinen et al. 2010). The vertical averages

of (un, ut) are then prescribed using conditions identical to (C5).

The outflow of the GS is applied at the eastern boundary along the segment between 39◦–41◦N. A

radiation condition is used for un whilst ut is taken to vanish along the segment:

∂un ∂un
+ ci = 0 and ut = 0. (C7)

∂t ∂n

As for (C7), the differential equation (C7) is approximated with an upstream scheme, so that zonal momen-

tum is always advected eastwards (out of the domain) at the boundary. The vertical averages of (un, ut) are

specified as follows. The distribution of un along the segment is first taken as( [ ] )2
z

un = uo,GS exp − , (C8)
lz,GS

where again lz,GS = 200 m. The zonal velocity uo,GS is computed such that the integral of un over the surface

area of the segment is equivalent to a volume transport of 90 Sv, a value compatible with mooring-based

estimates of the time-mean GS transport of 93 Sv at 55◦W (Hogg 1992) and 88 Sv at 68◦W (Johns et al.

1995). The vertical averages of (un, ut) are then prescribed using conditions identical to (C2).

Sargasso Sea The inflow of Sargasso Sea water (SSW) is applied at the eastern boundary along the

segment between 28◦–39◦N. In contrast to the DWBC inflow and similarly to the GS inflow, only the
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vertical averages of (un, ut) are specified. Conditions identical to (C7) are prescribed. The vertical averages

of (un, ut) are specified as follows. The distribution of un across the segment is first taken as( [ ] )2
z

un = ui,SSW exp − , (C9)
lz,SSW

where lz,SSW = 1000 m. The zonal velocity ui,SSW is computed such that the integral of un over the surface

area of the segment is equivalent to a volume transport of 60 Sv, which is the difference between the GS

outflow (90 Sv) and GS inflow (30 Sv). Accordingly, the net inflow (or outflow) of water vanishes at the

lateral boundaries of the domain. The vertical averages of (un, ut) are then prescribed using conditions

identical to (C2). No outflow condition is applied for SSW.

Other Segments

Along segments where no inflow or outflow is prescribed, conditions (C3) or (C7) are applied for (un, ut)

and conditions (C2) or (C5) are applied for (ūn, ūt).

Conditions on T, S,Ad, Ap, q
2/2, q2l

The following radiation condition is imposed at all lateral boundaries,

∂T ∂T± un = 0, (C10)
∂t ∂n

where T ∈ {T, S,Ad, Ap, q2/2, q2l}. As for (C3) and (C7), the differential equation (C10) is discretized with

an upstream scheme. The variable T is advected out of the domain if the boundary velocity (with normal

component un) is directed outwards, and it is advected into the domain if the boundary velocity is directed

inwards. Thus, boundary values of T must be prescribed for the case where the boundary velocity is directly

inwards. Boundary values of (T, S) are derived from the World Ocean Atlas (Locarnini et al. 2013; Zweng

et al. 2013) (section 2.a). The radionuclide activities (Ad, Ap) are set to different values at different locations

along the open boundaries. At the location of DWBC inflow (between 42.5◦–44.875◦N along 55◦W), 230Thd

(230Thp) is set to 0.4 dpm m−3 (0.03 dpm m−3) and 231Pad (231Pap) is set to 0.22 dpm m−3 (0.003 dpm

m−3). These values are the average activities below 1000 m in the Labrador Sea as reported by Moran

et al. (2002)), except for 231Pad whose boundary value is set to double this average activity. We found that

this increase in 231Pad at the DWBC inflow produces a better fit to the observed radionuclide activities in
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the western North Atlantic. At all other locations, values of (Ad, Ap) are set according to idealized profiles

that broadly reproduce measured profiles at station GT11-14 (27.58◦N, 49.63◦W) situated to the east of the

domain, ( ) ( )
A = A 1− ez/lzd,o and Ap = A z
d 1− ez/lp,o , (C11)

where the length scales lz = 1600 m for 230Th and lz = 1132 m for 231Pa. Note that z ≤ 0 in this study,

which implies that Ad and Ap as calculated from (C11) increase monotonically with depth (Fig. A7). Finally,

the boundary values of (q2/2, q2l) are set to small values.

APPENDIX D: 230Th and 231Pa Profiles at Individual Stations

This appendix illustrates observed and simulated profiles of 230Thd,p and 231Pad,p at individual (pre-

)GEOTRACES stations (Figs. A1–A13).
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Table 1: Thorium-230 and Protactinium-231 Data Used in this Study

station

CMME-13
S1

EN407-3
EN407-4
EN407-6

BATS
OC278-2
OC278-3
OC278-4
OC278-5
GT11-01
GT11-02
GT11-03
GT11-04
GT11-06
GT11-08
GT11-10
GT11-12
GT11-14

latitude

32.76◦N
36.05◦N
39.47◦N
38.6◦N
39.73◦N

32◦N
37◦N
33◦N
36◦N
38◦N

39.69◦N
39.35◦N
38.67◦N
38.09◦N
37.61◦N
35.42◦N
31.75◦N
29.70◦N
27.58◦N

longitude

70.78◦W
74.43◦W
68.37◦W
68.89◦W
69.75◦W

64◦W
69◦W
69◦W
68◦W
70◦W

69.81◦W
69.54◦W
69.10◦W
68.70◦W
68.39◦W
66.52◦W
64.17◦W
56.82◦W
49.63◦W

#a 230Thd

8
11
11
19
19
19
11
11
10
11
25
17
20
16
20
17
28
18
21

# 230Thp

8
10
0
0
0
0
0
0
0
0
10
12
12
12
12
12
12
12
12

# 231Pad

11
19
0
0
0
0
0
0
0
0
25
17
20
16
21
17
28
18
21

# 231Pap

0
0
0
0
0
0
0
0
0
0
10
12
12
12
12
12
11
12
11

berror

1σ
2σ
2σ
2σ
2σ
2σ
2σ
2σ
2σ
2σ
1σ
1σ
1σ
1σ
1σ
1σ
1σ
1σ
1σ

reference

Cochran et al. (1987)
Guo et al. (1995)
Luo et al. (2010)
Luo et al. (2010)

R. François (pers. com.)
R. François (pers. com.)
R. François (pers. com.)
R. François (pers. com.)
R. François (pers. com.)
R. François (pers. com.)

Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)
Hayes et al. (2015a)

a number of observations. b σ is the standard error for data from R. François (pers. com.) and the standard
deviation for all other data.
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Table 2: Parameters of the physical model component

Physical Parameters

value units

ρo reference density 1025 −3kg m
g acceleration due to gravity 9.806 −2m s
C Smagorinsky coefficient 0.2 1
κ von Kármán constant 0.4 1
κu,o background vertical viscosity 0 2 −1m s
κT,o background vertical diffusivity 0 2 −1m s
Pr turbulent Prandtl number 5 1
zr bottom roughness parameter 0.01 m
τ restoring time scale for SST and SSS 14.4 d

Numerical Parameters

value units

∆tE time step (external mode) 15 s
∆tI time step (internal mode) 450 s
∆s step interval for advective termsa 5 1
hmax maximum depth in radiation condition 200 m
umax maximum velocity for CFL violation 100 −1m s
c constant of Asselin filter 0.1 1
α weight for surface slope termb 0 1

a Step interval during which advective terms of the external mode are not updated
b Weight used for surface slope terms in the external mode equations
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Table 3: Parameters of the geochemical model component

value units

λTh-230 radioactive decay constant of 230Th 9.17× 10−6 −1yr
λPa-231 radioactive decay constant of 231Pa 2.12× 10−5 −1yr
234U activity of 234U 2750 −3dpm m
235U activity of 235U 108 −3dpm m
k1(Th) adsorption rate constant for Th variable −1yr
k1(Pa) adsorption rate constant for Pa variable −1yr
k1,b(Th) background value of k1(Th) 0.4 −1yr
k1,b(Pa) background value of k1(Pa) 0.04 −1yr
k′1(Th) sensitivity of k1(Th) to particle concentration 0.04 −1 −1 3yr mg m
k′1(Pa) sensitivity of k1(Pa) to particle concentration 0.02 −1 −1 3yr mg m
k−1(Th) desorption rate constant for Th 3.69 −1yr
k−1(Pa) desorption rate constant for Pa 18.45 −1yr
wp(Th) settling speed of 230Thp 1800 −1m yr
wp(Pa) settling speed of 231Pap 2400 −1m yr
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Table 4: Root Mean Square Difference Between Observed & Simulated Activities†

230Thd
230Thp

231Pad
231Pap

n 238 100 161 84

reference solution 0.078 0.028 0.039 0.001

k′1 / 2 0.086 0.025 0.041 0.001
k′1 × 2 0.086 0.037 0.037 0.003

DWBC inflow = 10 Sv 0.081 0.030 0.040 0.002
DWBC inflow = 40 Sv 0.076 0.029 0.037 0.002

Ad,p(DWBC inflow) / 2 0.078 0.025 0.033 0.001
Ad,p(DWBC inflow)× 2 0.165 0.041 0.110 0.002

uniform k1(Th) & k1(Pa) 0.075 0.043 0.041 0.002

Ad,p(DWBC inflow) / 2, DWBC inflow = 10 Sv 0.093 0.027 0.041 0.002

†All values in dpm m−3
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Table 5: Thorium-230 and Protactinium-231 Data Used in this Study

core latitude longitude depth (m) 231Pa/230Th reference

OCE152-BC1 39.49◦N 70.57◦W 1126 0.082 Anderson et al. (1994)
OCE152-BC8 32.47◦N 70.58◦W 1596 0.071 Anderson et al. (1994)
OCE152-BC9 39.42◦N 70.55◦W 1981 0.091 Anderson et al. (1994)
OCE152-BC5 39.08◦N 70.56◦W 2691 0.063 Anderson et al. (1994)
EN123-BC4 39.48◦N 70.56◦W 1280 0.076 Anderson et al. (1994)
EN123-BC6 39.49◦N 70.55◦W 1643 0.066 Anderson et al. (1994)
EN123-BC3 39.35◦N 70.55◦W 2344 0.061 Anderson et al. (1994)
EN123-BC1 39.08◦N 70.55◦W 2736 0.053 Anderson et al. (1994)
EN179-BC5 37.38◦N 74.13◦W 384 0.127 Anderson et al. (1994)
EN179-BC2 37.37◦N 74.10◦W 892 0.050 Anderson et al. (1994)
EN179-BC3 37.38◦N 74.09◦W 1031 0.075 Anderson et al. (1994)
EN179-BC4 37.32◦N 74.02◦W 1318 0.071 Anderson et al. (1994)
EN179-BC7 37.25◦N 73.49◦W 1989 0.051 Anderson et al. (1994)
EN187-BC4 37.37◦N 74.13◦W 512 0.063 Anderson et al. (1994)
EN187-BC10 36.52◦N 74.37◦W 580 0.089 Anderson et al. (1994)
EN187-BC8 36.52◦N 74.34◦W 1020 0.053 Anderson et al. (1994)
EN187-BC5 37.37◦N 74.10◦W 1045 0.069 Anderson et al. (1994)
EN187-BC11 37.02◦N 74.34◦W 1125 0.062 Anderson et al. (1994)
EN187-BC9 36.52◦N 74.34◦W 1165 0.075 Anderson et al. (1994)
EN187-BC6 37.24◦N 73.5◦W 2000 0.055 Anderson et al. (1994)

OCE325-GGC5 33.7◦N 57.6◦W 4550 0.054 McManus et al. (2004)
VM26-176 32.76◦N 70.78◦W 1126 0.065 Yu (1994)
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Fig. 1. Vertical profiles of dissolved 230Th and 231Pa activities in the North Atlantic. Data from stations
west (east) of Bermuda are shown with black (blue) circles and data from station GT11-16, near the TAG
hydrothermal vent, are shown with red circles. The horizontal bars show the measurement uncertainties

(see Table 1 for data sources).
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Fig. 2. Regionally averaged vertical profile of particulate matter (PM) concentration in the western North
Atlantic. Each circle is an average based on (i) optical measurements converted empirically to PM

concentration and (ii) a linear interpolation at the same vertical levels of the concentration estimates
obtained from optical profiles at different stations. The horizontal bars show the standard errors of the

averages (data compilation from Gardner et al. (2017)).
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Fig. 3. Map of the study area showing the location of GEOTRACES stations (red stars with numerals),
pre-GEOTRACES stations (red stars with letters), and nephelometer and transmissmeter stations

(circles). Black lines are isobaths of 200, 1000, and 3000 m, and blue arrows show schematic pathways of
the Gulf Stream (GS), Deep Western Boundary Current (DWBC), Northern Recirculation Gyre (NRG),

and Subtropical Gyre (SG). Also shown are the approximate locations of Bermuda (BER), the New
England Seamounts (NES), and the Sohm Abyssal Plain (SAP). The green line protruding from the

continental shelf and slope south of New England is line W.
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Fig. 4. Time series of the domain-averaged kinetic energy, 230Thd,
230Th 231

p, Pad, and 231Pap in the
reference solution
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mean elevation (1993-2012)
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model elevation

Fig. 5. Averages of sea surface height (m) as observed from satellite altimeter data during the period
1993-2012 (top) and as simulated in the reference solution (bottom). The average pathway of the Gulf

Stream coincides with the yellow band (upper panel) and “CH” stands for Cape Hatteras.
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Fig. 6. Standard deviation of sea surface height (m) as observed from satellite altimeter data during the
period 1993-2012 (top) and as simulated in the reference solution (bottom). The average pathway of the

Gulf Stream coincides with the yellow band (upper panel) and “CH” stands for Cape Hatteras.
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Fig. 7. Field of horizontal velocity in the surface layer (top) and at a depth of 3500 m (bottom) simulated
in the reference solution. The horizontal arrow at the lower right outside each panel is the maximum speed

in units of m s−1 in the corresponding field.
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Fig. 8. Distribution of horizontal velocity components between the New England continental shelf and

Bermuda as measured during the line W program (top) and as simulated in the reference solution
(bottom). At the top of each panel, red vertical lines show the position of GA03 stations GT11-01 to

GT11-06, and grey vertical lines show the position of mooring locations. Coordinates along the horizontal
axis are distances from 40.125◦N,70.125◦W (line W data from Toole et al. (2017)).
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Fig. 9. Profile of station-averaged 230Thd (top) and 230Thp (bottom) as calculated from pre-GEOTRACES
and GA03 measurements (black circles) and as simulated in the reference solution (red line). The circles

show averages of measurements from several stations with the following exceptions: for 230Thd the
shallowest circle is a measurement from a single station (OC278-5), and for 230Thd,p the deepest circle is a

measurement from a single station (GT11-12). The horizontal bars show the standard errors of the
averages (measurement error for the shallowest 230Thd measurement and the deepest 230Thd,p

measurements; Table 1). The extreme values of 230Thp near the bottom of stations GT11-04 and GT11-08
are excluded from the station-averaged profile of the measurements.
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Fig. 10. Profile of station-averaged 231Pad (top) and 231Pap (bottom) as calculated from
pre-GEOTRACES and GA03 measurements (black circles) and as simulated in the reference solution (red
line). The circles show averages of measurements from several stations with the following exceptions: for
231Pad (231Pap), the three (four) deepest circles show measurements from a single station (GT11-12). The
horizontal bars show the standard errors of the averages (measurement error for the three (four) deepest

measurements of 231Pad (231Pap); Table 1). The extreme values of 231Pap near the bottom of stations
GT11-04 and GT11-08 are excluded from the station-averaged profile of the measurements.
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Fig. 11. Scatter plots of measured radionuclide activities versus simulated radionuclide activities in the
reference solution. Shown in each panel are the squared Pearson correlation coefficient (r2), the p value of
the correlation, and the number of measurements (n). In each panel, the black line is the line of perfect

agreement. For panel (b) and (d), the extreme measured values of 230Th 231
p and Pap near the bottom of

stations GT11-04 and GT11-08, along with the corresponding model values, are excluded from the scatter
plot.
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Fig. 12. Distribution of near-bottom 231Pap/
230Thp in the reference experiment. The filled circles are

surface sediment data (Table 5), and the solid black lines are the 200 m, 1000 m, and 3000 m isobath,
respectively.
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Fig. 13. Scatter plot of surface sediment 231Pa/230Th data versus the near-bottom 231Pa 230
p/ Thp

simulated near the corresponding data location in the reference experiment. The regression coefficient
(slope) is 0.35± 0.36 (one standard error) and the Pearson correlation coefficient is 0.21 (n = 22). The

black line is the line of perfect agreement.
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Fig. 14. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from
(pre-)GEOTRACES measurements (black circles) and as simulated for k′1(Th) = 0.02 yr−1 mg−1 m3 and
k′ (Pa) = 0.01 yr−1 mg−11 m3 (blue lines), k′ −1 −1 3 ′ −1 −1 3

1(Th) = 0.04 yr mg m and k1(Pa) = 0.02 yr mg m
(red, reference solution), and k′ (Th) = 0.08 yr−11 mg−1 m3 and k′1(Pa) = 0.04 yr−1 mg−1 m3 (green). The

circles show averages of measurements from several stations, with the exceptions listed in Figure 9 for
230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the averages

(measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the
three (four) deepest measurements of 231Pa 231

d ( Pap); Table 1). The extreme values of 230Thp (Fig. 3) and
231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged

profile of the measurements.
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Fig. 15. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from
(pre-)GEOTRACES measurements (black circles) and as simulated when the strength of the DWBC at its
inflow location is set to 10 Sv (green lines), 20 Sv (red, reference solution), and 40 Sv (blue). The circles
show averages of measurements from several stations, with the exceptions listed in Figure 9 for 230Thd,p

and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the averages (measurement
error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the three (four)
deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp (Fig. 3) and 231Pap

(Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged profile
of the measurements.
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Fig. 16. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from
(pre-)GEOTRACES measurements (black circles) and as simulated when the radionuclide activities at the
DWBC inflow are halved (green lines) or doubled (blue) compared to their values in the reference solution

(red). The circles show averages of measurements from several stations, with the exceptions listed in
Figure 9 for 230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the

averages (measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements,
and the three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp
(Fig. 3) and 231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the

station-averaged profile of the measurements.
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Fig. 17. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from
(pre-)GEOTRACES measurements (black circles) and as simulated for uniform k1(Th) and k1(Pa) when

the strength of the DWBC at its inflow location is set to 10 Sv (green lines), 20 Sv (red), and 40 Sv (blue).
The circles show averages of measurements from several stations, with the exceptions listed in Figure 9 for

230Th and in Figure 10 for 231
d,p Pad,p. The horizontal bars show the standard errors of the averages

(measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements, and the
three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp (Fig. 3) and
231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the station-averaged

profile of the measurements.
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Fig. 18. Profile of station-averaged 230Thd,p (top) and 231Pad,p (bottom) as calculated from
(pre-)GEOTRACES measurements (black circles) and as simulated for the reference experiment (red),

when the radionuclide activities at the DWBC inflow locations are halved (green), and when the
radionuclide activities at the DWBC inflow locations are halved, and the DWBC at its inflow is 40 Sv
(blue). The circles show averages of measurements from several stations, with the exceptions listed in

Figure 9 for 230Thd,p and in Figure 10 for 231Pad,p. The horizontal bars show the standard errors of the
averages (measurement error for the shallowest 230Thd measurement, the deepest 230Thd,p measurements,

and the three (four) deepest measurements of 231Pad (231Pap); Table 1). The extreme values of 230Thp
(Fig. 3) and 231Pap (Fig. 6) near the bottom of stations GT11-04 and GT11-08 are excluded from the

station-averaged profile of the measurements.
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Fig. 19. Vertical profiles of optically derived particulate matter concentration at stations GT11-04,
GT11-06, and GT11-08 between the New England continental shelf and Bermuda. Particulate matter

concentration is estimated from beam attenuation coefficient measurements available in the GEOTRACES
Intermediate Data Product (Schlitzer et al. 2018) using the empirical relationship between PM

concentration and BAC due to particles as reported by Gardner et al. (2018b).
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Fig. 20. Distributions of particulate matter concentration as estimated from optical measurements
compiled by Gardner et al. (2017) (top three panels), 230Thd activity as simulated in the reference solution

(middle panels), and 231Pad activity as simulated in the reference solution (bottom panels). The left,
middle, and right panels show distributions at a depth of, respectively, 3000 m, 4000 m, and 5000 m.
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Figure A1. Profiles of dissolved and particulate 230Th activities measured in the western North Atlantic prior
to the GEOTRACES program. The horizontal bars show the measurement errors (Table 1), the horizontal
dashed line indicates water depth (from Ryan et al. (2009)), and the stations are identified with their names
and with letters located in figure 3 (see Table 1 for data sources).
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Figure A2. Profiles of dissolved 230Th activity measured in the western North Atlantic along the GEO-
TRACES section GA03. The horizontal bars show the measurement errors (Table 1), the horizontal dashed
line indicates water depth (maximum depth from CTD), and the stations are identified with their names
and with numbers located in figure 3 (data from Hayes et al. (2015a)).
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Figure A3. Profiles of particulate 230Th activity measured in the western North Atlantic along the GEO-
TRACES section GA03. The horizontal bars show measurement errors (Table 1), the horizontal dashed line
indicates water depth (maximum depth from CTD), and the stations are identified with their names and
with numbers located in figure 3. Note that 230Thp data from stations GT11-04 and GT11-08 are plotted
with a different scale than for the other stations (data from Hayes et al. (2015a)).
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Figure A4. Profiles of dissolved 231Pa activity measured in the western North Atlantic prior to the GEO-
TRACES program. The horizontal bars show measurement errors (Table 1), the horizontal dashed line
indicates water depth (from Ryan et al. (2009)), and the stations are identified with their names and with
letters located in figure 3 (see Table 1 for data sources).

111



231Pad (dpm m-3)

d
ep

th
 (

m
)

(1)GT11-01

ppp
(((

)))

(2)GT11-02

(3)GT11-03

(4)GT11-04

(6)GT11-06

(8)GT11-08

(10)GT11-10

(12)GT11-12

Figure A5. Profiles of dissolved 231Pa activity measured in the western North Atlantic along the GEO-
TRACES section GA03. The horizontal bars show measurement errors (Table 1), the horizontal dashed line
indicates water depth (maximum depth from CTD), and the stations are identified with their names and
with numbers located in figure 3 (data from Hayes et al. (2015a)).
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Figure A6. Profiles of particulate 231Pa activity measured in the western North Atlantic along the GEO-
TRACES section GA03. The horizontal bars show measurement errors (Table 1), the horizontal dashed line
indicates water depth (maximum depth from CTD), and the stations are identified with their names and
with numbers located in figure 3. Note that 231Pap data from stations GT11-04 and GT11-08 are plotted
with a different scale than for the other stations (data from Hayes et al. (2015a)).
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Figure A7. Profiles of 230Thd,p and 231Pad,p measured at station GT11-14 (circles). The red circles are
samples presumably influenced by the TAG hydrothermal vent, which is located to the east of GT11-14.
The black lines are analytical profiles which approximate station GT11-14 measurements and are used as
initial and lateral boundary conditions (Eq. C11). The horizontal bars show the measurement errors (Table
1; data from Hayes et al. (2015a)).
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Figure A8. Profiles of 230Thd and 230Thp as measured at pre-GEOTRACES stations (black circles) and
as simulated in the reference solution near these stations (red solid line). The horizontal bars show the
measurement errors (Table 1), the horizontal dashed line indicates water depth (from Ryan et al. (2009)),
and the red dashed line is the 230Thd or 230Thp profile used as initial conditions and prescribed at the open
boundaries. The stations are identified with their names and with letters located in figure 3.115
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Figure A9. Profiles of 230Thd as measured at GA03 stations (black circles) and as simulated in the reference
solution near these stations (red solid line). The horizontal bars show the measurement errors (Table 1), the
horizontal dashed line indicates water depth (maximum depth from CTD), and the red dashed line in each
panel is the 230Thd profile used as initial conditions and prescribed at the open boundaries. The stations
are identified with their names and with numbers located in figure 3.

116



GEOTRACES 230Thp

de
pt

h 
(m

)

230Thp (dpm m-3) 

(2)(1) (3) (4)

(6) (8) (10) (12)

GT11-01 GT11-02 GT11-03 GT11-04

GT11-06 GT11-08 GT11-10
GT11-12

Figure A10. Profiles of 230Thp as measured at GA03 stations (black circles) and as simulated in the reference
solution near these stations (red solid line). The horizontal bars show the measurement errors (Table 1), the
horizontal dashed line indicates water depth (maximum depth from CTD), and the red dashed line in each
panel is the 230Thp profile used as initial conditions and prescribed at the open boundaries. The stations
are identified with their names and with numbers located in figure 3. The extreme values of 230Thp near the
bottom of stations GT11-04 and GT11-8 (Fig. A3) are excluded from this figure.
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The horizontal bars show the measurement errors
(Table 1), the horizontal dashed line indicates water depth (from Ryan et al. (2009)), and the red dashed
line is the 231Pad profile used as initial conditions and prescribed at the open boundaries. The stations are
identified with their names and with letters located in figure 3.
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Figure A12. Profiles of 231Pad as measured at GA03 stations (black circles) and as simulated in the reference
solution near these stations (red solid line). The horizontal bars show the measurement errors (Table 1), the
horizontal dashed line indicates water depth (maximum depth from CTD), and the red dashed line in each
panel is the 231Pad profile used as initial conditions and prescribed at the open boundaries. The stations are
identified with their names and with numbers located in figure 3.
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Figure A13. Profiles of 231Pap as measured at GA03 stations (black circles) and as simulated in the reference
solution near these stations (red solid line). The horizontal bars show the measurement errors (Table 1), the
horizontal dashed line indicates water depth (maximum depth from CTD), and the red dashed line in each
panel is the 231Pad profile used as initial conditions and prescribed at the open boundaries. The stations
are identified with their names and with numbers located in figure 3. The extreme values of 231Pap near the
bottom of stations GT11-04 and GT11-08 (A6) are excluded from this figure.
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